LIGHT & ENGINEERING
(Svetotekhnika)

Editor-in-Chief: Julian B. Aizenberg
Associate editor: Sergey G. Ashurkov

Editorial Board:
Artyom E. Ataev
Vladimir P. Budak
Andrey A. Grigoryev
Alexei A. Korobko
Dmitry O. Nalogin
Alexander T. Ovcharov
Leonid B. Prikupets
Vladimir M. Pyatigorsky
Anna G. Shakhparunyants
Nikolay I. Shchepetkov
Alexei K. Solovyov
Raisa I. Stolyarevskaya
Konstantin A. Tomsky
Leonid P. Varfolomeev

Foreign Editorial Advisory Board:

Lou Bedocs, Thorn Lighting Limited, United Kingdom
Wout van Bommel, Philips Lighting, the Netherlands
Peter R. Boyce, Lighting Research Center, the USA
Lars Bylund, Bergen’s School of Architecture, Norway
Stanislaw Darula, Academy Institute of Construction and Architecture, Bratislava, Slovakia
Peter Dehoff, Zumtobel Lighting, Dornbirn, Austria
Marc Fontoynont, Ecole Nationale des Travaux Publics de l’Etat (ENTPE), France
Franz Hengstberger, National Metrology Institute of South Africa
Warren G. Julian, University of Sydney, Australia
Zeya Krasko, OSRAM Sylvania, USA
Evan Mills, Lawrence Berkeley Laboratory, USA
Lucia R. Ronchi, Higher School of Specialization for Optics, University of Florence, Italy
Janos Schanda, University of Veszprem, Hungary
Nicolay Vasilev, Sofia Technical University, Bulgaria
Jennifer Veitch, National Research Council of Canada

Moscow, 2014
CONTENTS

VOLUME 22 NUMBER 2 2014

LIGHT & ENGINEERING
(SVETOTEKNIKA)

Dmitry S. Strebkov
Prospectives of Using Technologies of Nicola Tesla in Up-To-Date Power Engineering 4

Lucia R. Ronchi
Warm and Cold Light as Related to Fine Grain of Circadiancy 15

Peter Alstone, Kristen Radecky, Arne Jacobson, and Evan Mills
Field Study Methods and Results from a Market Trial of LED Lighting for Night Market Vendors in Rural Kenya 23

Jury M. Kogan
Analysis of the Factors, which Influence Consumption of Electric Power for Illumination of Households in Russia and in the USA 38

Manuel Jesús Hermoso Orzáez and José Ramón de Andrés Díaz
Statistical Methodology Proposal for Evaluating Uniformity: Application to LED Luminaires 47

Parthasarathi Satvaya and Saswati Mazumdar
Studies on Road Lighting Luminaires with Advanced Features 59

Banu Tabak Erginoz and Cenk Yavuz
Energy Quality Analysis and Improvement for Fluorescent and LED Light Sources 65

Migle Kriuglaitė-Jarašiūnienė and Stanislovas Masiokas
Shrinkage of Colour Gamut of Digital Multimedia Projector under Influence of Ambient Light and Different Standard Illuminants 71

Mehmet Sait Cengiz and Sabir Rustemli
The Relationship between Height and Efficiency and Solution Offerings in Tunnel and Sub-sea Tunnels 76

Vera L. Zhbanova and Vladlen V. Nyubin
A Method of Improving Colour Rendition of Digital Photo- and Video cameras 84

Rengin Ünver and Esra Küçükkiliç Özcan
Perceived Colours under Different Light Sources, a Study on Facade Colour 90

Content #3 99
FIELD STUDY METHODS AND RESULTS FROM A MARKET TRIAL OF LED LIGHTING FOR NIGHT MARKET VENDORS IN RURAL KENYA

Peter Alstone¹, Kristen Radecsky², Arne Jacobson², and Evan Mills³

¹Energy and Resources Group, University of California, Berkeley
E-mail: peter.alstone@gmail.com

²Schatz Energy Research Center, Humboldt State University
E-mails: Kristen.Radecsky@humboldt.edu and Arne.Jacobson@humboldt.edu

³Lawrence Berkeley National Laboratory - emills@lbl.gov

ABSTRACT

We evaluated the uptake of grid-independent LED lighting among night vendors in two small Kenyan towns during the “early days” of the solar-LED market. The methods we used combine social geography with energy and technology analysis to understand LED lighting adoption patterns in the context of a market that is getting its first exposure to LED technology, a situation that is repeating itself in villages and towns across the developing world. Of 23 night vendors to whom we offered LED lanterns at realistic market prices, 14 (61%) opted to purchase. We identified wide variations in baseline kerosene fuel use, significant fluctuations in the pricing of kerosene, an only partial degree to which kerosene was displaced, the value of high-frequency utilization information derived from embedded data loggers, consumer willingness to pay for improved lights, and significantly confounding effects of market spoiling due to prior experience with low-quality LED products. In a likely response to significant reductions in kerosene prices during the trial period, a non-adopter control group increased kerosene use by 70%.

Keywords: LED, solar, developing countries, economics, market

CONTEXT

The market for improved off-grid lighting has developed rapidly in recent years, from a nascent and emerging set of handmade solar-LED lamps to a big business with several million products being sold annually [1]. Replacing fuel-based lighting with rechargeable, efficient lighting can provide higher quality and less expensive lighting services to end-users [2,3,4,5] reduce health risks [6,7,8], and mitigate the greenhouse gas impact of lighting technology use [9,10]. As the market develops, critical questions about the way to appropriately measure impacts of improved lighting remain.

This study summarizes work that was completed in two small towns in Kenya circa 2008–2009—the “early days” of the Kenya solar-LED market—to understand the dynamics of adoption.

RESEARCH APPROACH

The population we studied was comprised of night market vendors who operate in two towns in the Rift Valley Province, Kenya and rely on off-grid lighting to illuminate their businesses. After conducting an initial baseline survey of 50 vendors, we made detailed measurements of kerosene use for a subset (n=23) of them and offered them the opportunity to purchase an LED task light, with or without solar charging. Fourteen vendors chose to purchase the LED task light. One purchased the optional solar panel (others opting to recharge the light through local phone-charging enterprises).

In a previous report we focused on the baseline economics of off-grid lighting for the study group and documented many of our field methods.
for measuring fuel-based lighting energy use [3]. We also documented qualitative user feedback and the demand for lighting services [11].

This article documents the overall methods we developed for measuring the dynamics of off-grid lighting adoption and findings on the dynamics of the early market for LED lighting in Kenya. The outcomes from this work are relevant for scoping future monitoring and evaluation efforts to track global progress on energy access and institutional and private sector efforts to catalyze markets and measure impacts for improved off-grid lighting.

Geographic and Population Details

The night market vendors we studied live and do business in the towns of Maai Mahiu and Karagita. Both towns are located in Kenya’s Rift Valley Province, and at the time of the study were each populated by approximately 8,000 residents (Fig. 1). Maai Mahiu is a crossroads town, and provision of goods and services to passing travelers and truck drivers is an important economic driver there. The town is dispersed over a large area, encompassing about 3 km², and has a market area centered on the intersection of highways that link the cities/towns of Nairobi, Naivasha, and Narok. Karagita is more isolated and compact than Maai Mahiu, situated on an approximately 1 km² area in between the industrial greenhouses and flower farms that line the shores of Lake Naivasha. The people in Karagita are generally less prosperous than those in Maai Mahiu, owing to their reliance on relatively low-wage labor as opposed to the more diverse trading and service economy of Maai Mahiu.

Field Methods Approach

The goal of the market study was to measure the economic and environmental effects of efficient, LED lighting technology adoption by existing users of fuel-based lighting. To ensure that people who adopted (bought) LED products in our study were representative of the early adopters for the technology— and to examine the willingness to pay—we chose a “market-based” approach (i.e., we offered products to people at realistic market prices) as opposed to a giveaway. We chose to focus on night market vendors because they are relatively easy to access at night for observations and measurements, they have an income that might allow them to be early adopters of LED lighting, and they have a business incentive to adopt lighting that is less expensive to operate and more eye-catching for customers. While those characteristics made night market vendors a good target population for this initial work, their unique needs (e.g., lighting so customers can see their wares, lighting to attract customers from the street) means that their choices related to lighting technology are not necessarily broadly applicable to the general population.
To establish a baseline, we first surveyed 50 vendors (25 in each town) on their access to lighting and their knowledge base about emerging LED products. Next, we identified a subset of 23 of those vendors and made detailed measurements of their baseline kerosene consumption for lighting. This was an opportunistic sample of vendors who were both amenable to having us make measurements each night and who maintained a stationary shop location that our research team could find night-to-night. We developed a host of techniques to characterize the baseline kerosene consumption patterns for the subset of 23 vendors that we focused on; they are described in detail in [3]. In one method we used successive measurements of lamp mass over an evening of use to estimate the burn rate of lamps, and measured the lamps the following morning to estimate the total kerosene consumption. As a second method we repeatedly asked vendors to self-report how many hours they used their lamp (s) and how much kerosene they purchased on a daily basis. For each vendor, we collected at least one week’s worth of data. These data were complementary to the survey questions we asked about typical use patterns. Those 23 vendors were each offered an LED product at market prices, and 14 of them (61%) chose to purchase one. The LED products we offered for sale were goose-neck task lights with two charging options: solar and grid. The lamp with its associated solar module is pictured in Fig. 2.

After six months and again after one year, we conducted follow-up surveys with 20 and 18 of the subset of 23 vendors, respectively (three vendors were unavailable at six months and five at one year). The follow-up surveys replicated the baseline survey questions related to lighting use and included some user-satisfaction and habit information for those that chose to purchase an LED product. Throughout the year, we offered a full warranty to the LED lamp users to ensure that durability issues were not the limiting factor in their choice to access LED lighting or not. One member of the research team is a solar energy technician and longtime resident of the area who has social connections to people in both town, and provided technical support and maintenance throughout the study period.

Integrated Data-logging

The lamps had embedded data-loggers that were custom-developed by our team (pictured in Fig. 3). Unfortunately the data-loggers were early versions and were fraught with problems that limited their effectiveness and resulted in significant periods of missing data. However, we were able to monitor lamp use patterns for 350 days in total among the 14 vendors over a six-month period (out of a potential 2,500 days of monitoring). The data we obtained provided a first-order check on the survey responses from vendors about their frequency of charging and typical use patterns, and revealed other interesting aspects of usage patterns.

The data loggers monitored battery voltage and current at a sampling frequency of one minute. From the data one can discern solar or grid charging modes during the day and patterns of use at night (and in the early mornings) (Fig. 4). The data were stored onboard the device and retrieved via USB connection by a research assistant who visited participants during the course of the study.

With careful analysis (automated in a data processing script) one can discern users’ effectiveness of solar charging strategies, patterns of energy use, and responses to energy scarcity (a low battery).

True Cost of Kerosene

One requirement for our analysis was measuring the true cost of kerosene to the night market vendors. The value can be used to estimate the operating cost for devices with a known burn rate or to estimate the total amount of kerosene consumed by people that self-report the amount they spend on fuel.

The vendors predominantly purchase their kerosene from owner-operated storefront pumps that
Kerosene Consumption Measurement

In the course of our study, we used three methods to measure the nightly kerosene consumption of vendors at their businesses:

Direct measurements: Fuel burn rates were estimated from multiple measurements of the mass of a lamp over each night of use for several days. These were combined with self-reported hours of operation from the vendors. We gathered enough data of this type to make total fuel-consumption estimates for 23 vendors; the data were the basis of an earlier report on the comparative economics of off-grid lighting alternatives [3].

Record keeping / high frequency survey: Vendors tracked the amount of kerosene they had purchased the previous day and reported to our team daily over a period of several nights. They also tracked the number of hours they used fuel-based lighting in the home and business context. These data were gathered from the same 23 vendors in conjunction with the more detailed nightly measurements described above and combined with unit cost measurements from the local kerosene market to estimate the volume consumed.

Recall survey: We included a question to capture the typical amount a vendor spends on kerosene each day in the larger survey (n=50) that we employed and in the two follow-up surveys to a more limited set (n~20) at the 6 month and 1 year points.

We found that the relationship between the approaches to estimating the baseline nightly kerosene use at each business was not uniform (Fig. 5). The relationship between the survey and record keeping estimates exhibited the best linearity (i.e., internal consistency and agreement), particularly for large estimates, and was very near unity at the low end. The record-keeping based estimate could be construed as the most accurate and precise. Based on the relationship we observed between record-keeping and survey-based estimates, we chose to derate all of the survey estimates from the baseline survey by 30%.

Both relationships involving the nightly measurements were relatively linear on the low end and highly variable above 200 ml/night. The difficulty
Hurricane lamps, the clear preference among night market vendors in Mai Mahiu and Karagita, provide luminous flux on the order of 20–60 lm and provide useful lighting service (illuminance) of 3–5 lx at a one meter distance, which translates to approximately 0–10 lx on typical working surfaces [11]. The median fuel consumption rate of the hurricane lamps we made detailed field measurements for was 20.5 g/hour for larger hurricane lamps (n=14) and 14.4 g/hour for small ones (n=2). On a power basis, this translates to about 250 W and a luminous efficacy of about 0.1 lm/W (compared, for reference, to ~75–100 lm/W for efficient solar-powered CFL or LED light sources) on a primary energy basis.

Pressurized kerosene lamps (“pressure lamps”) are the other prominent kerosene burning lighting technology we observed; they were in use by 13 of the 50 vendors as a primary lamp. Pressure lamps burn about 10–20 times brighter and consume fuel at a faster rate than hurricane lamps. The lighting service from pressure lamps is typically 50–75 lx at 1 meter, and the median kerosene consumption rate we measured was 70 g/hour [3]), about 900 W on a power basis. The luminous flux output for the pressure lamps we measured was likely between 350 and 550 lm. The luminous flux output of pressure lamps has not been reported in the literature, but we can estimate it assuming that the ratio of luminous flux to illuminance for hurricane lamps is the same (i.e., the luminaire efficiency and luminous distribution for the two lamp types is the same). A ratio of 7.14 has been reported for hurricane lamps [13]. The luminous efficacy of pressure lamps is better than hurricane lamps, about 0.5 lm/W, but operating costs are substantially higher because they produce more light.

OUTCOMES: MARKET DYNAMICS

The vendors we worked with were strategic users of light – it is a costly yet necessary expense for operating their business. They used kerosene burning devices like hurricane, pressure, and tin lamps; candles; and a variety of rechargeable and dry cell electric lighting. Nearly 20% (9 of 50 vendors) used more than one lighting source at their business. Most of the vendors we surveyed primarily used fuel-based lighting (47 of 50 vendors); those that primarily used electric lighting were special cases (3 of 50 vendors), including one Kinyozi (barber shop) that used a small solar system that powered CFL bulbs and electric razors. Some fuel-based lighting users supplemented or backed-up their lamp with an electric light (normally a flashlight), but 42 of the 47 vendors used exclusively fuel-based lighting in the context of their night market enterprise.

By far, the dominant lighting technology among the vendors was kerosene hurricane lamps, which were the primary lighting source of 31 out of 50 (62%) of the vendors and the secondary source for two additional vendors. This is in contrast to earlier work in western Kenya, where the majority of night market vendors used less expensive tin lamps, which are named after the emptied food tins they are reformed to create the lamp [2]. Only one vendor we surveyed used a tin lamp as their primary source of light. Tin lamps provide luminous flux on the order of 10 lm [13], similar to that of the candles used by two vendors.

Hurricane lamps, the clear preference among night market vendors in Mai Mahiu and Karagita, provide luminous flux on the order of 20–60 lm and provide useful lighting service (illuminance) of 3–5 lx at a one meter distance, which translates to approximately 0–10 lx on typical working surfaces [11]. The median fuel consumption rate of the hurricane lamps we made detailed field measurements for was 20.5 g/hour for larger hurricane lamps (n=14) and 14.4 g/hour for small ones (n=2). On a power basis, this translates to about 250 W and a luminous efficacy of about 0.1 lm/W (compared, for reference, to ~75–100 lm/W for efficient solar-powered CFL or LED light sources) on a primary energy basis.

Pressurized kerosene lamps (“pressure lamps”) are the other prominent kerosene burning lighting technology we observed; they were in use by 13 of the 50 vendors as a primary lamp. Pressure lamps burn about 10–20 times brighter and consume fuel at a faster rate than hurricane lamps. The lighting service from pressure lamps is typically 50–75 lx at 1 meter, and the median kerosene consumption rate we measured was 70 g/hour [3]), about 900 W on a power basis. The luminous flux output for the pressure lamps we measured was likely between 350 and 550 lm. The luminous flux output of pressure lamps has not been reported in the literature, but we can estimate it assuming that the ratio of luminous flux to illuminance for hurricane lamps is the same (i.e., the luminaire efficiency and luminous distribution for the two lamp types is the same). A ratio of 7.14 has been reported for hurricane lamps [13]. The luminous efficacy of pressure lamps is better than hurricane lamps, about 0.5 lm/W, but operating costs are substantially higher because they produce more light.
Lamps, 77% of the pressure lamp (order of magnitude higher brightness than hurricane lamp) users, and only 23% of hurricane lamp users were satisfied. In spite of the higher operating costs reported by pressure lamp users, the majority was satisfied, indicating that they have made a choice to pay more for higher quality lighting because they can afford to and feel it is cost-effective for their business.

Sixty% of the night market vendors we talked to were dissatisfied with their current lamp. Of the 31 hurricane lamp users, 77% were dissatisfied, comprising the majority in the “dissatisfied” group. Of those who were dissatisfied, insufficient lighting service (“too dim”) was the most common complaint, followed by high operating costs. Inconvenience, health, safety, and durability concerns were mentioned also, but infrequently. Three pressure lamp users were dissatisfied, two because of the high operating costs and even one who operated a butchery because it was “too dim” for the application (sharp knives, multiple cutting stations spread over ~10 m²).

The vendors we surveyed tended to use their lamps for about 2 hours each night in a business context, although those in Mai Mahiu operated for longer (median use 2.5 hours) and Karagita for shorter (median use 1.8 hours). The vendors in Karagita operated for a shorter time due to security concerns in the area. Anecdotes from people familiar with the area indicated that Karagita was heavily impacted by the post-election civil violence that occurred in early 2008 and that peoples’ ongoing security concerns led them to avoid public areas after dark, leading to truncated market hours compared to normal. Additionally, many vendors used their fuel-based lamps to illuminate their homes after business hours. The cost of fuel-based lighting was quite high on an annual basis. Fig. 6 shows the distribution in self-reported annual fuel costs based on primary fuel-based lighting type.

Baseline Impressions of Lighting Technology

We asked each of the vendors in the baseline survey about their satisfaction with their current lighting technology (which was low) and interest in LED alternatives (which was high). A follow-up to each question asked respondents to identify factors that determined their dissatisfaction / interest.

Only 40% of fuel-based lighting users were satisfied with their lamps. All users who used electric lamps, 77% of the pressure lamp (order of magnitude higher brightness than hurricane lamp) users, and only 23% of hurricane lamp users were satisfied. In spite of the higher operating costs reported by pressure lamp users, the majority was satisfied, indicating that they have made a choice to pay more for higher quality lighting because they can afford to and feel it is cost-effective for their business.

Sixty% of the night market vendors we talked to were dissatisfied with their current lamp. Of the 31 hurricane lamp users, 77% were dissatisfied, comprising the majority in the “dissatisfied” group. Of those who were dissatisfied, insufficient lighting service (“too dim”) was the most common complaint, followed by high operating costs. Inconvenience, health, safety, and durability concerns were mentioned also, but infrequently. Three pressure lamp users were dissatisfied, two because of the high operating costs and even one who operated a butchery because it was “too dim” for the application (sharp knives, multiple cutting stations spread over ~10 m²).

The vast majority (90%) of vendors were interested in exploring LED alternatives to their baseline lighting technology. Many of them were already somewhat familiar with LED lighting [14,15]. The reasons people cited for their interest in LEDs mirrored the complaints of dissatisfied fuel-based lighting users. Brightness and lower operating costs were
the top two perceived benefits from LED technology, followed by convenience, health, and safety benefits.

Adoption of LED Lighting by Night Market Vendors

Fourteen vendors out of the 23 were offered the opportunity to purchase a grid-charged LED lamp, many with financing offered by the research team. Their purchase choices reflected the charging options available in the peri-urban town centers, where the grid was present but access was limited by high connection costs, higher initial costs for solar charging, and concerns about security.

Thirteen vendors chose to purchase the lamps with an AC/DC adapter for accessing grid electricity from our research team for 700 Ksh (~$US 10.75) and one chose to purchase a solar module along with the lamp for an additional 800 Ksh (~$US 12.30). Some vendors had easy access to electricity, either with a grid connection at home, at a friend’s home, or from an existing solar home system. For them, the additional expense of a solar module did not make sense from a financial standpoint. Other vendors intended to pay a fixed fee for charging services at a shop – a common enterprise in Kenyan towns that has grown with the mobile phone industry and a transaction the vendors were comfortable with. At those shops, the vendors paid 20 Ksh (~$US 0.25–0.30 depending on the exchange rate) for each recharge. This amounted to paying approximately 10 $US/kWh, two orders of magnitude higher than the marginal retail rate for commercial customers, about 0.14 $US/kWh.

Financing the initial costs of the lamps was a critical issue for many of the vendors we worked with. We offered zero-interest financing (half up front, half in one month) to the vendors after their requests for credit and nine of the fourteen used it to purchase their lamp. The repayment rate was 100%, but several vendors took longer than the agreed one month to pay. In practice, the financing model we offered would obviously not be sustainable on free market terms. Our experience lends credence to the importance efforts to expand end-user financing for off-grid lighting. However, the time line on which we asked vendors to make purchase decisions was on the order of 2 weeks. We estimate that their daily income was between 50–200 Ksh, so the 700 Ksh initial cost of the lamps we offered would amount to between 25–100% of their income during the decision period. With that in mind, it is sensible that many vendors required financing to make their purchase. Had our “business model” been less time sensitive (e.g., if we had set up a long-term shop to sell lighting products), the interested buyers may have been able to save ahead to make their purchase over several weeks and months, as needed, and some may not have required financing to make a purchase.

Market Spoiling and Other Factors in the Choice to Buy Off-Grid LED Lighting

The vendors who were offered LED lighting products for sale (23 of them) faced a decision about whether the technology was affordable, appropriate for their needs, and likely to work out well over time. One factor that may have influenced their purchase decisions was the high time value of money (i.e., the people we worked with were generally “cash poor” and acted as though they had high personal discount rates). The cost of fuel-based lighting is driven mainly by ongoing fuel purchases, which stands in contrast to the cost of electric lighting systems, which can have ongoing costs that range from zero (in the case of solar charged products, aside from battery replacements) to high percentages of the total (in the case of users who pay for each recharge at a shop, typically once or twice a week). Switching from fuel-based to a solar-charged lighting system represents a paradigm shift in one’s economic strategy for accessing lighting in addition to the technology shift that is readily apparent – essentially a shift from small daily purchases (like a lighting subscription) to a single outlay up front (or with short-term financing) for several years of lighting service. For those who are cash-poor, it can be difficult to abandon the economic model of accessing lighting where the initial cost of equipment is lower and the outlay on any given day is modest.

Discount rates aside, there are other concerns that lead to a vendors’ decision to purchase or not purchase an LED lamp. The vendors we worked with had an estimated net income of 50–200 Ksh per day, so an LED lamp would represent four to fourteen days of income for them. Depending on their

1 The estimate is not based on survey questions; we did not want to colour the interaction by asking about income. We estimated based on casual observation of their business and local rules of thumb.
other cash obligations, it may have been simply too difficult to pull together the cash necessary to pay for a lamp regardless of any desire to save money by switching to LED lighting. The optional financing was helpful in this regard.

Finally, any consideration of new technology adoption includes the criterion, “Will it work” Flame based lighting has worked reliably, albeit at a high economic, health, and environmental cost, for millennia. Quality issues are a particular concern for LED lighting as it has emerged in the African market. A recent set of studies by Lighting Africa showed that inexpensive LED torches like the ones used by some of the vendors we surveyed in 2008 have become ubiquitous [4] and are of extremely low quality [14]. A series of reports focused on LED torches [15, 16] showed that nearly 90% of LED torch users – some in the towns in which the current study was being conducted – experienced quality-related problems over a six-month period and that there was a significant demand for higher quality LED torches in the market. Because most African consumers will likely experience LED technology first with a low-quality torch, there is a significant market spoilage risk.

We found that in the limited sample size of our study, previous experiences and familiarity with LED lighting, primarily flashlights, had a statistically significant negative impact on users’ decision to purchase an LED gooseneck lamp from us, in spite of the one-year warranty we offered (warrantees are also ostensibly offered on the packaging of many low quality products in general in Kenya, with limited recourse to the consumer to service them).

Fig. 7 illustrates our findings related to purchase choice and shows LED lighting familiarity by type for night market vendors in Mai Mahiu and Karagita. Of the 23 vendors who were offered LED lamp for sale, eleven were familiar with the technology and twelve were not. Ten of the eleven were familiar with LED torches, four were familiar with strip or array style LED lighting; a similar pattern of familiarity was observed in the larger population of night market vendors, where 32 of 50 (64%) were familiar with LED lighting, 30 of whom were familiar with flashlights. Out of the eleven vendors who were familiar with and offered the choice to purchase an LED task light, only three (27%) chose to purchase. Out of the twelve who were unfamiliar, eleven chose to purchase (92%). A linear regression model [17] also indicates that prior familiarity with LED lighting is the largest magnitude and most statistically significant factor that predicted the purchase choice.

Our results show that a market spoiling effect exists from exposure to existing LED products – primarily flashlights – among the night market vendors we engaged with. We found no overlap between the 95% confidence intervals on the estimated proportion of those who will purchase improved LED lighting products for two groups: those who are and are not already familiar with lower-quality existing LED lighting products.
The vendors who used LED lamps as the primary lighting source in the market reported using them for approximately 2 hours each night at their businesses and an additional hour at home. The data-logger records do not distinguish between business and home use, but we asked vendors to disaggregate their use in the surveys. The agreement in the mean total use per day between the surveys and data-logger records lends credence to vendors’ estimates of how long they use their lamps. Additionally, their estimates of daily run time reconcile well with the run-time of the lamps (10 hours) and how often users reported they typically recharged, a median answer of every three days. The median number of days per recharging cycle we observed using the data-loggers was four days. Based on the apparent quality of the daily use data provided by the vendors, we have confidence in the overall ability of vendors who use off-grid lighting to estimate their hourly use patterns and charging frequency.

Solar Energy Concerns for Vendors

After six months we gave solar modules to each of the vendors still participating in the study; it was clear by then that none of them intended to purchase one from us and we were interested to see how (and if) their charging practices would be influenced by the ownership of a solar module. At the six-month point, nine vendors typically recharged at a fee-based shop, three had access to grid connections at their home or that of a friend, and one used a solar home system with a DCDC converter to recharge. In spite of the “free” nature of solar charging, many vendors chose to continue paying for charging services from fee-based recharging shops after receiving a solar module. Only two vendors adopted solar charging as their primary method. The reasons vendors gave for not adopting solar charging included security concerns (they did not want to module to be stolen), perceptions of ineffectiveness (they felt that grid charging resulted in a more “full” charge), and the inconvenience of needing to tend the solar module. Some vendors did choose to solar charge, noting that their costs were lower. The vendors who used solar charging successfully tended to recharge each day, while those who did not reporting that they attempted to use solar charging like grid charging (i.e., they put it out to charge when the state of charge was low instead of every day). The vendors’ use of solar charging in this context cannot be taken as rep-
users paid to recharge their lamps essentially eliminated much of the potential economic benefit from switching to LED lighting over the course of the study; both user-groups thus experienced falling costs for lighting overall (60% reduction for the LED purchasers and 10% reduction for the non-purchasers). The expenses for fuel and ongoing costs did not drop to zero for the LED purchasers because several of them continued to use kerosene lamps at their businesses either solely or in combination with the LED lamp. Furthermore, those who did not choose to purchase or use solar charging for their lamps paid a fee to recharge (~$US 0.25 each time).

The mean kerosene consumption for the LED purchaser group was reduced on the order of 50% over the year. For the non-purchasers, their consumption over the study period increased by 70%, which was likely due to falling fuel prices. In spite of the increased use their costs fell on average from the rapidly falling prices.

The failure to fully offset kerosene by LED lamp purchasers occurred for both hurricane and pressure lamp users but in different ways for each group. For hurricane lamp users, a typical pattern was to continue using the hurricane lamp occasionally in addition to the LED lamp. For pressure lamp users, those who used the LED lamp at their business typically did not also use the pressure lamp (which is two orders of magnitude brighter), but there were also two vendors who purchased LED lamp for sole use at their household. If the lights we had offered were bright enough to meet their needs or if we had offered brighter alternative lights to them, it is likely that they would have switched as well. Both of them reported trying the LED lamp at their business and concluding it was not bright enough, which indicates a diversity of needs in terms of lighting levels even among night market vendors. The degree of market segmentation in the wider off-grid lighting market also includes very many levels of service need and ability to pay.

The most notable result from our analysis of the time-series data is that the primary energy requirements for those who purchased LED lights were not reduced to zero. While approximately 60% of those who adopted an LED light completely eliminated their use of kerosene, the others continued using kerosene at the same or slightly higher rates. For the purposes of uncertainty assessment, we assume the estimate for the fraction of kerosene that is still in use by the average user is 0.5, but with a triangu-

\[\text{Impacts of LED Lighting Technology Over Time} \]

We divided the vendors who were tracked over one year into two groups: the vendors who purchased LED lighting (“LED purchasers”) and those who did not (“LED abstainers”). By tracking both, we maintained a pseudo-control group (albeit a self-selected one), the LED abstainers, as a basis for comparison. While there were differences in the baseline for each group in terms of mean and median daily costs and kerosene consumption, there was no statistical significance to the difference (i.e., the groups were not distinct in terms of their kerosene consumption to begin with).

It was important to account for the electricity consumption for vendors who used grid-charging for their lamps. The Kenya grid includes both hydroelectric and oil-burning thermal plants that can operate on the margin [18]. We assume the additional load from grid charging lamps is equally likely to come from either hydroelectricity or thermal plants that have an efficiency of 33%; both sources are assigned 10% line losses. This results in an estimate for the average marginal primary energy intensity of 6 MJ/kWh. Based on the measured charging efficiency of the AC charger of 21% and assumed battery efficiency of 70%, the lamps we offered required 25 W·h of grid electricity for each charging cycle. The median observed recharging rate for lamp users was once every three days.

The price volatility in the kerosene market2 (falling prices) combined with the fact that many end-

2 One vendor mentioned that being shielded from price volatility was a positive aspect of using LED lighting. She recounted that there was a temporary price spike in kerosene due to national shortages in month 5 of the study and she was glad to have been unaffected by it.
larity of likely values for individuals with a maximum offset of 5% more than the baseline, median of 100% of the baseline, and minimum of a 50% increase (Figs. 9, 10) above baseline, which corresponds to the distribution of observations in our study and results in a mean displacement of 50%.

We should stress that the population we worked with has special needs and were nested in a particular economic and geographic context. They may not be representative of the larger consumer market for in-home off-grid lighting, but the implication for emissions reduction assumptions around LED lighting is that 100% offset may not be likely to be a defensible choice for other products of similar size. It is possible, however, that design changes (e.g., a brighter light with longer run time) may lead larger offsets. Indeed, subsequent studies using better-performing systems have shown larger offset rates.

CONCLUSIONS AND KEY RESEARCH DIRECTIONS

Our work illustrates the importance of locally grounded information to support emerging markets. One might expect the vendors we worked with to be a relatively homogenous population—they live in the same towns, have similar occupations and income streams, etc.—but we observed a great deal of diversity in their approaches to accessing lighting for their businesses. There was a range of baseline technology in use, with annual fuel costs ranging from about $20 to $200. These costs varied across vendors and also are strongly influenced by volatile world oil prices, leading to cost uncertainty for users. More than half the people who had the option purchased an improved off-grid LED light as part of the research study, and the most significant and largest factor predicting the purchase was lack of prior experience with low-quality LED lighting, suggesting market spoiling. Additionally, reflecting the diversity in incomes and lighting needs, many vendors who did purchase improved LED lighting continued to use fuel-based lighting (while others did not). This increase in lighting service is important to account for in any development impact assessment for off-grid lighting where there is pre-existing suppressed demand due to economic hardship or fuel scarcity.

There were also important similarities among the vendors in the study. Most (60%) were dissatisfied with their baseline fuel-based lighting, particularly those who used hurricane lamps, which have lower output and efficacy (along with lower operating costs) than the pressure lamps that some vendors used. Those who were dissatisfied cited brightness as a key factor. Additionally, in spite of the revealed skepticism engendered by market spoiling, 90% of the vendors we surveyed were interested to learn more about improved LED lighting. Targeted consumer education and exposure to good-quality

![Fig. 9. Kerosene consumption ratios before and after LED adoption choice for those who did and did not adopt](image)

![Fig. 10. Differences in mean kerosene expense, and consumption for LED purchasers and abstainers](image)
LED lighting that is owned and operated by friends and neighbors could gird the market against spoiling from low-quality LED lights.

Beyond the results for these vendors, which are a useful case study on the dynamics of the market, we identified several methodological approaches that are useful for understanding the market more broadly. Specifically, a combination of “true cost of kerosene” estimates and high frequency or short term recall surveys provides a useful baseline on fuel-based lighting use. Because these methods do not require detailed surveys or explanation by end-users (beyond the type of lighting they use and how much they spent on fuel in the last day/week) it may be possible to leverage the ubiquity of mobile phones to conduct automated, high resolution surveys via SMS (i.e., directly back and forth with end-users) to improve the data on the baseline fuel-based lighting market. We recommend pilot testing an automated approach with follow-up in person surveys to verify the results. If this approach proved useful it would be a powerful tool for targeting market interventions and supporting research.

In addition, in spite of the technical difficulties we experienced with the first-generation integrated data-loggers employed in the study, the data we obtained showed the potential value from high-frequency use-pattern data for researchers, product developers, and institutions supporting the market. The value is magnified when those data are combined with good analytics and outreach to consumers via mobile phones or other modern communications. From simple measurements it is possible to make estimates and inform interventions that address three important factors:

- **The effectiveness of users’ solar panel placement**, by comparing the solar energy input from a number of solar modules in close geographic proximity (or compared to a reference pyranometer). Some users consistently place the module in full-sun exposure day after day while others often do not place it outside until the late morning or place it in a location prone to shade. This would be an important factor for product design/sizing and estimates of performance, as any losses from ineffective placement effect performance just like any other inefficiency. This can be corrected with user education, either through feedback from the device or with targeted outreach from a project developer or institution. With good data, it would be possible to effectively target the interventions.

- **The patterns of daily use**, by observing the current discharged from the battery (and further disaggregation by load type if appropriate). These patterns would inform product design and could lead to predictive messages targeted to consumers whose historical use patterns indicate they may face an energy shortage due to upcoming weather events or seasonal variation in solar energy.

- **Product maintenance issues**, by identifying diminished performance that cannot be explained by patterns of use or a lack of solar energy, or more starkly based on products that simply go out of service. Outreach to users who have a device with likely issues could prevent backsliding to kerosene lighting. The same data would be useful for tracking development impacts of off-grid lighting by verifying continued use.

POSTSCRIPT: TRACKING ADOPTION RATES

The lighting product we assessed is now roughly five years old, and rapid technological improvements in all system components have been made during that timeframe. A recent review found that product performance across the marketplace more broadly—measured in terms of lumen-hours per daily battery charge (under standardized solar conditions)—had quadrupled between just 2010 and 2012 (Dalberg Global Development Advisors 2013). These trends suggest a good outlook for improved rates of fuel-substitution.

We identified a number of other studies and field reports that attempted to quantify the degree to which lighting fuels were offset following the introduction of LED lanterns. The results (Table 1) suggest a wide range of outcomes, many of which are more successful than results from our 19 small sample of night vendors. A variety of metrics can be used to inform such analyses, including numbers of lights replaced and quantities of fuel displaced.

One of the other studies, conducted during the same period as ours (testing seven different lamps, n=99), also found less than a 1:1 substitution rate, which authors trace to product performance that did not meet user requirements. Replacement rates varied widely, however, (from 0.4 to 1.5 fuel-based lights replaced by each LED lantern) depending on the type and performance of lantern. The issues included inadequate lumen maintenance, undersized batteries or solar chargers, etc., which occurred in 18% of the cases [21].
Multiple factors contribute to variations in estimates of fuel displacement:

- The variety of new light sources introduced to target groups (and their performance).
- Changes in use of the new lighting system over time as it becomes less novel or due to other factors.

Thus, the duration of the evaluation can be important. In our study, savings declined over time (see Fig. 8) as technical problems beset the LED lanterns. Conversely, another study found progressive reductions in kerosene use as more LED lanterns were introduced [22].
• Product failure rates.
• Changes in the behavior of control groups (as seen in this study where a steep drop in world oil prices led to increased kerosene use).
• Changes in service levels (e.g., one study in Malawi found that lighting hours increased from 2.7 h/day to 4.4 h/day after the LED lantern was introduced [26]).

Data collection efforts that depend on some form of direct observation or measurement over time (including both, before and after adoption, as well as over time during both periods) will generally give much more accurate results.

The key conclusion from this body of research is that improvements in the quality of LED lanterns will help obtain greater levels of energy savings.

ACKNOWLEDGMENTS

This article is based on a longer report by the same authors [19]. This work was funded by The Rosenfeld Fund of the Blum Center for Developing Economies at UC Berkeley, through the U.S. Department of Energy under Contract No. DE-AC02–05 CH11231.

REFERENCES

