TABLE OF CONTENTS

List of Tables .. iv
List of Figures .. v
Acknowledgements ... vii
Executive Summary... viii
 Introduction and Objectives .. viii
 Methods .. viii
 Results .. ix
 Management Implications ... xi
Introduction ... 1
 Administrative Mandate .. 1
 Yosemite Wilderness Use ... 1
 Computer Simulation Modeling .. 2
 Goals and Objectives .. 3
Study Area .. 4
Data Collection and Analysis ... 5
 Sampling Procedures .. 5
 Survey Instrument ... 7
 Sample Properties .. 7
 Spatial and Temporal Deviations .. 8
 Comparison of Past and Present Trip Characteristics .. 10
Yosemite Wilderness Use Simulation Model ... 12
 Estimation of Model Parameters .. 12
 Simulating Trips ... 13
 Simulating Route Choice Deviation ... 14
 Simulating Trip Duration .. 15
 Predefined versus Dynamic Trip Characteristics .. 16
 External Trailhead Influence .. 17
 Simulation Procedures ... 17
 Model Verification and Validation ... 18
Visitor Use Scenario Modeling and Analysis .. 21
 Current Use Scenario Intent and Output .. 21
 Trips originating in Yosemite .. 21
 Effect of deviation ... 22
 Additional influence from outside Yosemite ... 24
Use Redistribution Scenario Intent and Output ... 26
Maximum Allowed Use Scenario Intent and Output ... 28
LIST OF TABLES

Table 1. Summary of deviations reported by survey respondents ... 9
Table 2. Comparison of trip attributes between 1970s and 2010 ...11
Table 3. Comparison of sample trip deviations between 1970s and 2010 11
Table 4. Party size verification summary19
Table 5. Intended trip duration validation summary .. 19
Table 6. Mean annual use and bounds on the middle 95 percentiles of use 22
Table 7. Spatial deviation rate verification summary .. 24
Table 8. Use (mean season-total visitor nights) in the eight most heavily used zones 25
Table 9. Trailhead quota adjustments required to reduce use to acceptable levels27
LIST OF FIGURES

Figure 1. Temporal trend in wilderness use...44
Figure 2. Wilderness management zones...45
Figure 3. Temporal distribution of use from 2009 data ...46
Figure 4. Map showing location of stations outside of Yosemite at which surveys were
distributed..47
Figure 5. Survey instrument map sectors...48
Figure 6. Distribution of temporal deviations reported by survey respondents49
Figure 7. Model flow diagram ..49
Figure 8. Sample variance in model-simulated use in a low-use zone-night as a function
of number of simulations..50
Figure 9. Sample variance in model-simulated use in a high-use zone-night as a function
of number of simulations...50
Figure 10. Estimated zone capacity exceedance probability for a high-use zone-night as a
function of number of simulations ...51
Figure 11. Distribution of party size from the permit database and a single simulation of the
validation model..51
Figure 12. Distribution of intended trip duration from the permit database and a single
simulation of the validation model ...52
Figure 13. Distribution of entry trailheads from the permit database and a single simulation
of the validation model..52
Figure 14. Comparison of intended wilderness use by zone-night as calculated from the
permit database (top) with use predicted by one simulation of the validation model
(bottom)...53
Figure 15. Mean wilderness use over 1,000 simulations of the validation model, expressed
as a fraction of capacity...54
Figure 16. Histogram and normal probability plot showing distribution of season-total use
across 1,000 simulations of the validation model ...54
Figure 17. Relationship between variance and mean of individual zone-night use across
1,000 simulations of the validation model...55
Figure 18. Mean wilderness use over 1,000 simulations of the Current Use Scenario,
expressed as a fraction of zone capacity ..55
Figure 19. Probability of use exceeding capacity over 1,000 simulations of the Current Use
Scenario...56
Figure 20. Probability of use exceeding 110% of capacity over 1,000 simulations of the
Current Use Scenario...56
Figure 21. Probability of use exceeding 150% of capacity over 1,000 simulations of the Current Use Scenario..57
Figure 22. Trailhead contribution to zone use for the Current Use Scenario..57
Figure 23. Mean wilderness use over 1,000 simulations of the Current Use Scenario, including additional influence from outside Yosemite, expressed as a fraction of zone capacity ..58
Figure 24. Probability of use exceeding capacity over 1,000 simulations of the Current Use Scenario, including additional influence from outside Yosemite..58
Figure 25. Probability of use exceeding 150% of capacity over 1,000 simulations of the Current Use Scenario, including additional influence from outside Yosemite ..59
Figure 26. Mean wilderness use over 1,000 simulations after steps 1 and 2 of the Redistribution Scenario, expressed as a fraction of zone capacity ..59
Figure 27. Probability of use exceeding capacity over 1,000 simulations after steps 1 and 2 of the Redistribution Scenario ..60
Figure 28. Probability of use exceeding 110% of capacity over 1,000 simulations after steps 1 and 2 of the Redistribution Scenario ..60
Figure 29. Probability of use exceeding 150% of capacity over 1,000 simulations after steps 1 and 2 of the Redistribution Scenario ..61
Figure 30. Trailhead contribution to zone use after steps 1 and 2 of the Redistribution Scenario ..61
Figure 31. Mean wilderness use over 1,000 simulations of the Redistribution Scenario, expressed as a fraction of zone capacity ..62
Figure 32. Probability of use exceeding capacity over 1,000 simulations of the Redistribution Scenario ..62
Figure 33. Probability of use exceeding 110% of capacity over 1,000 simulations of the Redistribution Scenario ..63
Figure 34. Probability of use exceeding 150% of capacity over 1,000 simulations of the Redistribution Scenario ..63
Figure 35. Trailhead contribution to zone use for the Redistribution Scenario ..63
Figure 36. Mean wilderness use over 1,000 simulations of the Maximum Use Scenario, expressed as a fraction of zone capacity ..64
Figure 37. Probability of use exceeding capacity over 1,000 simulations of the Maximum Use Scenario ..64
Figure 38. Probability of use exceeding 110% of capacity over 1,000 simulations of the Maximum Use Scenario ..65
Figure 39. Probability of use exceeding 150% of capacity over 1,000 simulations of the Maximum Use Scenario ..65
Figure 40. Trailhead contribution to zone use for the Maximum Use Scenario ..66
Figure 41. Features drawing use to Sunrise Creek (zone 66)..67
ACKNOWLEDGMENTS

The National Park Service, through a grant from the Yosemite Conservancy, provided funding for this study. We wish to thank Yosemite employees Bret Meldrum, Mark Marschall, Mark Fincher, David Pettebone, Paul Gallez, Ken Watson, Bill Kuhn, Jay Sammer, Martijn Ouborg, and Naomi Chakrin along with the wilderness permit distribution team and personnel at all park entrance / exit stations for their assistance with the project.
EXECUTIVE SUMMARY

INTRODUCTION AND OBJECTIVES

In response to overuse in the Yosemite wilderness, a mandatory permit system was implemented in 1972. Subsequently, the wilderness was divided into 53 management zones, and an overnight camping capacity was established for each. In order to minimize the probability that use exceeds zone capacities, without imposing excessive regulation on users once they enter the wilderness, a trailhead quota system was implemented in 1977. Trailhead quotas were derived from permit data and a simulation model that related zone use to trailhead use. However, changes in the characteristics of wilderness visitors could change the effectiveness of the quota system in preventing overuse, but no systematic study of Yosemite wilderness use has been conducted since the 1970s.

The goal of this study was to assess current use of the Yosemite wilderness. Because of the complexity of interaction among factors that determine use in an individual zone on an individual night (“zone-night”), a computer simulation model, populated with current data on visitor characteristics, is the best way to accomplish this goal. Objectives were:

1. Quantify wilderness visitor characteristics;
2. Compare characteristics of current wilderness users with those of the 1970s;
3. Construct, populate and validate a wilderness use simulation model that
 a. incorporates observed itinerary deviation characteristics,
 b. predicts means and percentiles of use at the zone-night resolution, and
 c. includes the effect of wilderness use originating outside of Yosemite;
4. Employ the simulation model to
 a. quantify current use at the zone-night and annual scales by source,
 b. estimate probabilities of capacity exceedance at the zone-night scale,
 c. quantify the dependence of zone use on trailhead use, and
 d. find a trailhead assignment scenario that achieves “no exceedance”; and
5. Identify both the most heavily used zones and trailheads and the zones and trailheads that have the greatest potential to absorb increased use.

METHODS

We constructed a stochastic simulation model of wilderness use with ExtendSim OR software. Distributions of party size, trailhead selection, and trip date were created directly from the 2010 wilderness permit database, using information from all 14,497 parties that started trips during the 1 May to 30 September season and intended to spend at least one night in the Yosemite wilderness. Trip date was assigned deterministically in the model; all other characteristics were assigned or simulated stochastically. Party size, trip date, and trailhead were the only attributes assigned at the initiation of a simulated trip. Trailheads were assigned randomly by an algorithm that filled trailheads in order of popularity.
according to observed probabilities of trailhead selection. On average, parties that were
assigned a trailhead at quota were reassigned the next most popular trailhead that was
available. Instead of creating a fixed set of travel itineraries, travel route and trip duration
for each party were created dynamically according to a zone transition probability matrix
that was created from the permit database. Additional transition matrices and user
attribute distributions were created for Yosemite wilderness use that originated at
surrounding U.S. Forest Service (USFS) trailheads.

We surveyed a random sample of 1,123 wilderness visitors to quantify their
deviation from intended itineraries and then applied the observed rates of spatial deviation
stochastically in the model. Temporal deviation was modeled by changing the odds of
exiting the wilderness in the transition matrix, without changing the relative transition
probabilities among the zones. The factor by which exit odds were adjusted was
determined by requiring mean trip duration produced by the model to match our estimate
of mean trip duration of actual users. This estimate was produced by adjusting intended
trip duration of all trips in the permit database by the deviation characteristics observed in
the sample. The odds adjustment factor was the only model parameter determined by
calibration; all other parameters were determined directly from the database or sample.

We used statistical model verification and validation methods to ensure that model
algorithms were implemented correctly and that intended use at the zone-night resolution
matched observed values. Based on behavior of variance in model outputs, we determined
that 1,000 season-long replicates were adequate to provide accurate estimates of output,
and we based all of our results on 1,000 replicates. We used the model to simulate current
conditions, find a trailhead redistribution scheme that lowered use in the most heavily
used zones, and determine the effects of filling all trailhead quotas on every day. The end
user of the model can easily adjust the trailhead quotas and the number of parties that start
on each day of the season to investigate other situations.

RESULTS

Mean intended trip duration in 2010 was 2.48 nights, which was significantly lower
than the value of 2.94 observed in the 1970s. Mean party size was 2.92, which was
significantly lower than the value of 3.26 observed in the 1970s. However, the permit
itinerary adherence rate of 34.2% was not significantly different than the rate of 37.7%
observed in the 1970s. In 2010, 36.2% of parties deviated temporally from their intended
itineraries, and 54.4% deviated spatially. Spatial and temporal deviations were not
independent; 25.2% of all parties deviated both spatially and temporally. The mean
temporal deviation was a decrease of one night in trip duration. Trips were shortened at a
rate of 0.42 nights per night the party intended to spend in the wilderness, and this rate
was not significantly different than the value of 0.33 estimated in the 1970s. When applied
to all permitted parties, temporal deviation lowered mean trip duration to an estimated
actual value of 2.12 nights. Taken together, spatial and temporal deviation reduced the
The season-total estimate of Yosemite-derived use 14.7%, from 105,571 visitor nights based on intended itineraries to 89,997 based on simulations that incorporated deviation. Use from outside of Yosemite contributed an additional 10,010 visitor nights (Table E1), thereby comprising 10% of total use, compared with an estimated 4% in the 1970s. About 0.5% of total season-long use occurred in frontcountry backpacker camps.

Table E1. Mean annual use and bounds on the middle 95 percentiles of use, by source.

<table>
<thead>
<tr>
<th>Source</th>
<th>Mean Annual Use (visitor nights)</th>
<th>% of Use</th>
<th>2.5th percentile</th>
<th>97.5th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yosemite trailheads</td>
<td>89,997</td>
<td>90.0%</td>
<td>88,255</td>
<td>91,740</td>
</tr>
<tr>
<td>Bridgeport USFS</td>
<td>3,010</td>
<td>3.0%</td>
<td>2,517</td>
<td>3,504</td>
</tr>
<tr>
<td>Other USFS</td>
<td>6,235</td>
<td>6.2%</td>
<td>5,707</td>
<td>6,764</td>
</tr>
<tr>
<td>Pacific Crest Trail</td>
<td>765</td>
<td>0.8%</td>
<td>727</td>
<td>802</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100,007</td>
<td>100%</td>
<td>98,121</td>
<td>101,895</td>
</tr>
</tbody>
</table>

The eight most heavily used zones accounted for 43.6% of total use (Table E2), compared with 51.1% in 1973 and 36.9% in 1979. This group includes five of the eight most heavily used zones in the 1970s. Snow Creek, May Lake, and Yosemite Creek were in the top eight in 2010 but not in the 1970s; all of these are adjacent to trailheads. Mean use in each of Sunrise Creek, Snow Creek, Glen Aulin, and May Lake exceeded capacity on at least one night. Together, they accounted for 50 zone-nights on which mean use exceeded capacity and 203 zone-nights on which capacity exceedance probabilities were greater than 20%. In addition, capacity exceedance probabilities in Vogelsang were greater than 20% on 34 nights. Use originating outside of Yosemite had relatively little effect on any single zone except Lyell Canyon, where 22.5% of use originated outside of the park.

Table E2. Use (visitor nights) in the eight most heavily used zones. The Relative Use Index is percent of total use due to that zone divided by its percent of capacity. Values greater than 3 indicate at least a 20% chance that use exceeds capacity on more than one night.

<table>
<thead>
<tr>
<th>Code</th>
<th>Zone</th>
<th>Capacity</th>
<th>YOSE use</th>
<th>%YOSE use</th>
<th>Total use</th>
<th>% Total use</th>
<th>Relative Use index</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>Little Yosemite Valley</td>
<td>150</td>
<td>7679</td>
<td>8.53%</td>
<td>7922</td>
<td>7.92%</td>
<td>2.22</td>
</tr>
<tr>
<td>68</td>
<td>Yosemite Creek</td>
<td>100</td>
<td>6964</td>
<td>7.74%</td>
<td>6973</td>
<td>6.97%</td>
<td>2.93</td>
</tr>
<tr>
<td>72</td>
<td>Lyell Canyon</td>
<td>125</td>
<td>4892</td>
<td>5.44%</td>
<td>6313</td>
<td>6.31%</td>
<td>2.12</td>
</tr>
<tr>
<td>66</td>
<td>Sunrise Creek</td>
<td>50</td>
<td>5547</td>
<td>6.16%</td>
<td>5807</td>
<td>5.81%</td>
<td>4.88</td>
</tr>
<tr>
<td>67</td>
<td>Snow Creek</td>
<td>50</td>
<td>4595</td>
<td>5.11%</td>
<td>4605</td>
<td>4.61%</td>
<td>3.87</td>
</tr>
<tr>
<td>81</td>
<td>Glen Aulin</td>
<td>50</td>
<td>4003</td>
<td>4.45%</td>
<td>4122</td>
<td>4.12%</td>
<td>3.46</td>
</tr>
<tr>
<td>63</td>
<td>Vogelsang</td>
<td>50</td>
<td>3779</td>
<td>4.20%</td>
<td>3950</td>
<td>3.95%</td>
<td>3.32</td>
</tr>
<tr>
<td>75</td>
<td>May Lake</td>
<td>50</td>
<td>3864</td>
<td>4.29%</td>
<td>3872</td>
<td>3.87%</td>
<td>3.25</td>
</tr>
</tbody>
</table>
By lowering trailhead quotas at nine of the most popular trailheads and redistributing an average of 3,575 parties from these trailheads to the least popular trailheads in the park, we simulated a condition in which mean use exceeded capacity on only one zone-night. The probability that use exceeded capacity was greater than 30% in only eight out of 8,109 possible zone-nights, compared with 134 zone-nights under current conditions. When every trailhead is filled to quota every day, a maximum of 1,196 parties per day are allowed into the wilderness, equating to a mean of 2,260 visitor nights per day. This rate of use is only 54% of the total zone capacity of 4,200, yet travel patterns are such that even in absence of temporal or spatial preference for trailheads, use in many zones greatly exceeds capacity. Under maximum allowable use, zones with the greatest mean use, relative to capacity, are Bridalveil Creek, Snow Creek, and Yosemite Creek. Use exceeds 150% of capacity in Snow Creek and Yosemite Creek on nearly every night. These two zones are among the most heavily used under current conditions as well. On the other hand, there are many zones in which use never exceeds capacity, even with every trailhead full on every night.

Under current conditions, most zones receive the majority of their use from only a few trailheads. Every zone except Washburn Lake and Twin Lakes receives at least 20% of its use from a single trailhead, and 18 zones receive over 50% of their use from a single trailhead. Part of this observed zone use-trailhead relationship is determined by visitor preference in time and space. The zone use-trailhead relationship produced by filling each trailhead to quota on each day removes spatiotemporal visitor preference for trailheads and results in the inherent relationship between zone use and trailhead of origin that is determined by the geography of the park, the physical capabilities and short-term behavior of wilderness users in selecting routes and camping locations, and the trailhead quotas themselves. Under this “true” relationship, the distribution of use across trailheads is more uniform than that currently observed, and comparison between the true zone-trailhead relationship and the current relationship allows identification of the trailheads that contribute the most to visitor use relative to their quota (e.g., Mirror Lake to Snow Creek) and those that contribute the least relative to their quota (e.g., Westfall).

MANAGEMENT IMPLICATIONS

Our results have three primary implications for management.

1. **Adjustment of permit data.** Deviation from intended itinerary reduces use levels about 14% from those estimated from raw permit data. Thus, management actions made to lower zone use that are informed strictly by use figures derived from permit data are likely to be overly conservative. On the other hand, about 10% of total zone use originates from outside of the park. Based on current conditions, a procedure for estimating actual use from the permit database, without having to go through the entire simulation procedure, is to first reduce permit-derived use estimates by 14%. Then, increase the resulting use in Lyell Canyon by 30% and use...
in all of the other zones by about 1.5%. This method can be applied at the resolution of zones or zone-nights and will result in a better estimate of actual use conditions than simply using the raw permit data.

2. Effects of shorter trip durations. Although shorter trip durations do not necessarily lead to zone capacity exceedances, they do lead to a greater fraction of total use in zones that are readily accessible from trailheads. Snow Creek, May Lake, and Yosemite Creek are among the eight most heavily used zones today, but none were in the top eight in the 1970s, providing some evidence that a preference for shorter trips may be leading to increased use in some zones. Redistributing some of these shorter trips to parts of the park that receive less use could lower capacity exceedance probabilities under current use levels and trip characteristics.

3. Effectiveness of trailhead quotas. As detailed in lengthy analysis in the full report, we conclude that the inherent relationship between zone use and trailhead use has probably changed very little since the inception of the quota system, given that this relationship is based primarily on geography, physical capabilities of wilderness users, and the quotas themselves. The zone-use trailhead relationship based on actual use patterns may have changed somewhat due to changes in user preferences, but even with preference removed, geography dictates that most use in most zones will come from a relatively small number of trailheads. Thus, the original quota system remains a viable basis from which to determine future management. More importantly, our “no-exceedance” solution illustrates one of a theoretically infinite number of ways in which current use can be redistributed to lower-use areas in the park to achieve substantially lower probabilities of capacity exceedance without changing overall use, temporal distribution of use, or any other party or trip attribute. Therefore, we have shown that not only is the trailhead quota scheme a viable approach to managing use in wilderness zones but more importantly that a specific trailhead quota scheme exists that reduces capacity exceedance in Yosemite. This scheme can serve as a starting point for developing others that can achieve management objectives under socially acceptable conditions.