Humboldt State University ® Department of Chemistry

Richard A. Paselk

Chem 431


Fall 2008

Lecture Notes: 5 December

© R. Paselk 2008


beta-oxidation of Fatty Acid, cont.

Long chain fatty acids

These fatty acids are bound to Fatty acid binding protein for transport within the cytosol. They are impermeable to the inner mitochondrial membrane (they are also toxic to the mito!). They are thus esterified in the cytosol by microsomal Fatty acyl CoA synthetase in a reaction identical to the one shown before for short chain acids. Again the reaction is driven by the hydrolysis of pyrophosphate. The enzyme involves an acyl AMP intermediate:

structural diagram for the two step reaction catalyzed by Fatty acyl CoA synthetase

with Ping Pong Bi Uni-Uni Bi kinetics:

Kinetic mechanism diagram showing Cleland Ping-Pong Bi Uni Uni Bi kinetics

Carnitine Carrier

The resulting acyl CoA ester is still not permeable to the mitochondrial membrane so a carrier system is needed. In this system the fatty acyl group is transferred from CoA-S to carnitine, crosses the membrane via facilitated diffusion catalysed by the Carnitine transporter, and then transferred back to another CoA-S within the matrix:

structural diagram of the reactions of the Carnitine carrier system

The carnitine transport step across the inner membrane is the slow step and flux generating step for Beta-oxidation of long chain fatty acids. This step is limited by the acylation by Carnitine acyl transferase enyme. This enzyme is also the control step, as it is inhibited by Malony-CoA, the product of the first step of fatty acid biosynthesis. Thus simultaneous fatty acid biosynthesis and breakdown is prevented.

Note that this system also maintains separate pools of CoASH in the cytosol vs. the matrix.

-Oxidation Reactions

Once inside the mitochodrial matrix fatty acyl CoA can be broken down in the matrix by the fatty acid -oxidation cycle [overhead] as shown in Figure 16.19, and the -oxidation scheme in your Biochemistry Packets. [overhead] Note that the first three reactions of -oxidation are the "mainline sequence" reactions we've already seen in the TCA Cycle. So you already know nearly all the reactions! The last reaction of the cycle releases an acetyl-CoA via a Claisen cleavage reaction (like an aldol cleavage but for esters instead of aldehydes). Note the similarity to the Claisen condensation from organic chemistry:

Structural diagram of the Claisen condensation mechanism

but of course run in reverse, and with CoAS- substituting for the alkoxide ion in the cleavage reaction.

Energy Yield

If we calculate the energy production for the complete oxidation of palmitate (16 C 's) by the -oxidation cycle we get:

 Reaction Energy Product Factor Multiplier ATP Equiv.

FACoA Syn. AMP -2 1 -2
Flavin DH FADH2 1.5 (2) 7 10.5 (14)
NAD+ DH NADH 2.5 (3) 7 17.5 (21)  7

8 AcCoA's to Kreb's TCA Cycle
NADH 2.5 (3) x 3 8 60 (72)  24
GTP 1 8 8  0
FADH2 1.5 (2) 8 12 (16)  8
Total       106 (129)  46

If we look at ATP/C we get 106/16= 6.63, while for glucose we get 32/6= 5.33, and for hexanoate: 36/6= 6. Thus, as expected, the fatty acids, being more reduced on average, give more energy per carbon and per gram. Along with the fact that they are stored without water of hydration, unlike carbohydrates, we can see their advantage as energy storage molecules for mobile organisms.

P/O Ratio

Another measure of fuel use is the P/O ratio, the number of ATP's generated for each oxygen atom consumed. For palmitate P/O = 106/46 = 2.3. As a comparison the P/O for glucose = 32/12 = 2.67. Notice by this measure glucose is the better fuel in situations where oxygen is limiting, since glucose will give more ATP's per mL of oxygen.


One might think that since an unsaturated fatty acid is created during beta-oxidation that unsaturated fatty acids should be handled easily by this system. However two problems occur due to the high level of specificity of the enzymes involved:

Two new enzymes are required to handle these situations: Enoyl-CoA isomerase (isomerizes a cis-3,4-double bond to a trans-2,3-double bond), and 2,4-Dienoyl-CoA reductase (reduces the cis-4,5-double bond in the trans-2,3-cis-4,5-dienoyl-CoA derivative formed during beta-oxidation). The resulting products are then broken down by the beta-oxidation enzymes.


Most biological fatty acids are of even-numbered carbon chains. However, some organisms, particularly in the arctic marine environment, have a relatively high odd-chain component. Thus in organisms such as traditional Eskimo (Innuit) and polar bears eating lots of seal blubber and fish, odd-chain fatty acids can constitute a significant dietary component. These fatty acids are handled normally through beta-oxidation until the last turn, where pentyl-CoA is cleaved into acetyl-CoA and propionyl-CoA. The propionyl-CoA is converted through a number of steps to succinyl-CoA. These steps involve addition of carbon dioxide (with ATP energy) and an isomerization requiring cobalamin derived from vitamin B12. The succinyl-CoA can then be metabolized normally via the TCA cycle to malate, then to PEP and then to either 2-PGA for gluconeogenesis or to Pyruvate for energy production. (Propionate metabolism is also important to ruminants, since it is produced as a fermentation product by their symbiotic bacteria from plant matter.)

Pathway Diagrams

C431 Home

Lecture Notes

Last modified 5 December 2008