Math 240

Name: Key

Date: 09/30/16
Quiz 3

Directions: You have 15 minutes to complete this quiz. Read each problem carefully. There are two problems on the back of this page.

1. (2 points) Let \(a, b \in \mathbb{Z}, a \neq 0\). State the definition of the phrase:

\[\text{"a divides } b\text{".}\]

What is the notation we use for this phrase?

\[\text{"a divides } b\text{" means } b = ak \text{ for some integer } k.\]

We use the notation \(a \mid b\).

2. (3 points) Let \(a, b, m \in \mathbb{Z}, m \geq 2\).

(a) State the definition of the phrase:

\[\text{"a is congruent to } b\text{ modulo } m\".}\]

What is the notation we use for this phrase?

\[\text{"a is congruent to } b\text{ modulo } m\" \text{ means } m \mid (a-b).\]

We write \(a \equiv b \pmod{m}\).

(b) Give an example of two integers that are congruent modulo 3.

\[4 \equiv 7 \pmod{3} \text{ since } 3 \mid (4-7)\]

(c) Give an example of two integers that are not congruent modulo 4.

\[1 \not\equiv -6 \pmod{4} \text{ since } 4 \nmid (1-(-6)).\]
3. (3 points) Let \(x, y \in \mathbb{Z} \).

Prove: If \(5 \mid x \) and \(5 \mid x + y \), then \(5 \mid y \).

Proof: Assume that \(5 \mid x \) and \(5 \mid x + y \). Then \(x = 5k \) and \(x + y = 5l \) for some \(k, l \in \mathbb{Z} \). Therefore

\[
x + y = 5k + y,
\]

so \(y = 5l - 5k = 5(l-k) \). Since \(l-k \in \mathbb{Z} \), we see that \(5 \mid y \), as desired. \(\Box \)

4. (2 points) Let \(A, B \) and \(C \) be sets.

Prove: \(A \times (B \cap C) \subseteq (A \times B) \cap (A \times C) \)

Proof: Let \(z \in A \times (B \cap C) \). Then \(z \) is an ordered pair and we write \(z = (a, d) \), where \(a \in A \) and \(d \in B \cap C \). Then \(d \in B \) and \(d \in C \), so we know that

\[
(a, d) \in A \times B \quad \text{and} \quad (a, d) \in A \times C.
\]

Hence \((a, d) \in (A \times B) \cap (A \times C) \).

We conclude that \(A \times (B \cap C) \subseteq (A \times B) \cap (A \times C) \). \(\Box \)