Math 340, Number Theory, Fall 2016
Homework 4 Solutions

2.1.6 Compute \(\tau(n) \) for \(n \) between 21 and 30.

Solution:

\[
\begin{array}{c|cccccccc}
 n & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
\hline
\tau(n) & 4 & 4 & 2 & 8 & 3 & 4 & 4 & 6 & 2 & 8 \\
\end{array}
\]

2.2.2 Let \(E \) denote the set of even integers. List the primes in \(E \) between 21 and 40.

Solution: Note that \(x \in E \) is prime in \(E \) if and only if 4 does not divide \(x \). So the primes in \(E \) between 21 and 40 are 22, 26, 30, 34, and 38.

2.2.18 Let \(T \) be the set of positive integers of the form \(3n + 1 \). Give an example of distinct primes \(p, q, \) and \(r \) in \(T \) such that \(p^2 = qr \).

Solution: Let \(p = 10, q = 4 \) and \(r = 25 \). Then \(p, q, \) and \(r \) are primes in \(T \) and \(p^2 = qr \).

The next two problems refer to the set \(S = \{ a + b\sqrt{-6} \mid a, b \in \mathbb{Z} \} \).

2.3.16 Show that if \(A \) divides 1, then \(A \) is 1 or \(-1 \).

Proof. Let \(A \in S \). Suppose that \(A \) divides 1 in \(S \). Then \(1 = AB \) for some \(B \in S \). So \(1 = |1|^2 = |AB|^2 = |A|^2|B|^2 \). In particular (since \(|A|^2 \) is a nonnegative integer), \(|A|^2 = 1 \). Therefore \(A \) is 1 or \(-1 \). \(\square \)
2.3.20 Show that $3 + \sqrt{-6}$ is prime in S.

Proof. We will prove this by contradiction. Suppose that $3 + \sqrt{-6}$ is not prime in S.

Then $3 + \sqrt{-6} = AB$ for some A and B in S with neither A nor B equal to 1 or -1. So $15 = |3 + \sqrt{-6}|^2 = |AB|^2 = |A|^2|B|^2$. Hence $|A|^2$ is equal to 3 or 5. If we write $A = a + b\sqrt{-6}$ for some integers a and b, then we would have $a^2 + 6b^2$ equal to 3 or 5. However it is easy to see by inspection that either of these two options is an impossibility. We are forced to conclude that $3 + \sqrt{-6}$ is prime in S, as desired. □