Summary of Convergence Tests for Infinite Series

Test	Series	Converges if	Diverges if	Comment
Divergence	$\sum_{n=1}^{\infty} a_n$		$\lim_{n \to \infty} a_n \neq 0$	cannot be used to show convergence
Geometric Series	$\sum_{n=0}^{\infty} ar^n$	r < 1	$ r \ge 1$	Sum: $S = \frac{a}{1-r}$
p-Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	$p \leq 1$	
Integral	$\sum_{n=1}^{\infty} a_n$ $\sum_{n=0}^{\infty} ar^n$ $\sum_{n=1}^{\infty} \frac{1}{n^p}$ $\sum_{n=1}^{\infty} a_n$ $a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(x) dx$	$\int_{1}^{\infty} f(x) dx$	f is continuous, positive, and decreasing
	$u_n = f(n) \ge 0$	$converges \\ 0 \le a_n \le b_n$		and decreasing
Comparison	$\sum_{n=1}^{\infty} a_n$	and $\sum_{n=1}^{\infty} b_n$ converges	and $\sum_{n=1}^{\infty} b_n$ diverges	a_n, b_n positive
	∞	$\lim_{n \to \infty} \frac{a_n}{b_n} > 0$	$\lim_{n \to \infty} \frac{a_n}{b_n} > 0$	a_n, b_n positive Test fails if
Limit Comparison	$\sum_{n=1}^{\infty} a_n$	and	and	$\lim_{n \to \infty} \frac{a_n}{b_n} = 0$
		$\sum_{n=1}^{\infty} b_n \text{ converges}$	$\sum_{n=1}^{\infty} b_n \text{ diverges}$	or $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$
Alternating Series	$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$	$b_{n+1} \le b_n$	$\lim_{n \to \infty} b_n \neq 0$	b_n positive
		$\lim_{n \to \infty} b_n = 0$		
Absolute Convergence	$\sum_{n=1}^{\infty} a_n$	$\sum_{n=1}^{\infty} a_n $ converges		cannot be used to show divergence
Ratio	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1$	Test fails if
				$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1$
Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left a_n \right ^{1/n} < 1$	$\left \lim_{n \to \infty} \left a_n \right ^{1/n} > 1 \right $	Test fails if
	11—1			$\lim_{n \to \infty} \left a_n \right ^{1/n} = 1$

Comments: The following general guidelines are useful:

- 1. Does the nth term approach zero as n approaches infinity? If not, the Divergence Test implies the series diverges.
- 2. Is the series one of the special types geometric, telescoping, p-series, alternating series?
- **3.** Can the integral test, ratio test, or root test be applied?
- 4. Can the series be compared favorably to one of the special types?