1. Suppose that \(f(x) = 5x - 7 \) for all \(x \in \mathbb{R} \).
 a. Complete the following table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 b. Complete the following mapping diagram for \(f \) with the indicated numbers (determine an appropriate scale for the target values):

 c. Sketch a graph for \(f \) based on the chart (determine an appropriate scale for the vertical axis):
2. Let \(f(x) = mx + b \) sketch mapping diagrams for the following: Use the same scale for the second axis.

a. \(m = -2; b = 1: f(x) = -2x + 1 \) m = 2;

b. \(b = 1: f(x) = 2x + 1 \)

c. \(m = \frac{1}{2}; b = 1: f(x) = \frac{1}{2}x + 1 \)

d. \(m = 0; b = 1: f(x) = 0x + 1 \)

e. \(m = 1; b = 1: f(x) = x + 1 \)
3. **Using the focus point to solve a problem.** [Use the same scale for the second axis.]

E 1. Solving a linear equation: 2x + 1 = 5; 2x + 1 = x + 2

Let \(f(x) = 2x + 1 \) and \(g(x) = x + 2 \)

For which \(x \) does \(f(x) = 5 \); \(f(x) = g(x) \)?

Solution: Find the focus points \([2,1]\) for \(f \) and \([1,2]\) for \(g \).

Use \([2,1]\) and \([1,2]\) to find the solutions.

What visual feature of \([2,1]\) and \([1,2]\) identified \(x \) where \(f(x) = g(x) \)?

4. Find “fixed points” of \(f : f(x) = 2x + 1 \)

For which \(x \) does \(f(x) = x \)?

Solution: Find the focus point \([2,1]\) for \(f \). Use \([2,1]\) to find the solution.

What visual feature of \([2,1]\) identified \(x \) where \(f(x) = x \)?
5.
 a. On separate diagrams sketch mapping diagrams for \(g(x) = 2x \) and \(h(x) = x + 1 \)

 b. Use these sketches to draw a composite sketch of the mapping diagram for the composite function \(f(x) = h(g(x)) = (2x) + 1 \) and then a sketch for the mapping diagram of \(f(x) = 2x + 1 \)
c. Use the sketches of part a. to draw a composite sketch of the mapping diagram for the composite function \(p(x) = g(h(x)) = 2(x + 1) \) and then a sketch for the mapping diagram of \(p(x) = 2(x + 1) = 2x + 2 \)

Inverse linear functions:

6. a. Make a transparency for mapping diagrams for \(g(x) = 2x \) and \(h(x) = x + 1 \). Flip the transparency over and use this on separate diagrams to sketch mapping diagrams for \(\text{invg}(x) = \frac{1}{2}x \) and \(\text{Invh}(x) = x - 1 \).
“Socks and shoes” with mapping Diagrams

b. Use the sketches of part a to draw a composite sketch of the mapping diagram for the composite function \(\text{invf}(x) = \text{invh}(\text{invg}(x)) = \frac{1}{2}(x - 1) \) and then a sketch for the mapping diagram of \(\text{invf}(x) = \frac{1}{2}(x - 1) = \frac{1}{2}x - \frac{1}{2} \)

7. How would you use the Linear Focus to find the mapping diagram for the function inverse for a linear function when \(m \neq 0 \)?

8. How does the choice of axis scales affect the position of the linear function focus point and its use in solving equations?