Martin Flashman's Courses
Math 110 Calculus II Summer, '01
Current as of 7-31-01
MTWR 12:00-13:15 SH 128 [Occasionally R SH 118]

Back to Martin Flashman's Home Page :) Last updated: 4/10/01
Summer, 2001     Problem Assignments(Tentative as of 6-02-01)      M.FLASHMAN
MATH 110 : CALCULUS II                  Stewart's Calculus 4th ed'n.
 (*= interesting but optional)
 
Assignments and recommended problems I 

6/5--> Background Reality Check 
6/5 -->IV.D 1-11 odd  23. 24 
 6/6--> 4.10. 43, 45, 47, 48, 51, 52 
 6/7 -->10.2  (i) 2-6, 9, 11, *15 
 6/7   -->   (ii) 21, 23 
6/6->  IV.E 5-9 odd (a,b), 20 21,24 
 6/7 ->Read pp 416-422 exponential functions, I.F.2 , 428-430 (review of logs) 
6/7 -->I.F.2   3, 4 
6/11-> Read  VI.A, do7.2 (i) 29, 33, 34, 37, 47-51, 57, 61, 63, 53 
6/12->           (ii) 60, 62, 70, 71-77 odd, 79, 80, 85, 86 
6/11-> 7.3 Review of logs 3-17 odd, 31, 33, 35, 41, 47, 59-61, *78 
6/11-> Reality Quiz #1 (Pick up at Library 48) 
6/12--> Read VI.B. 
6/12 -> 7.4 (i) 3-9 odd, 25, 28, 8, 22 
 6/12->     (ii) 15, 13, 35, 52 
6/13->  Log diff'n (iii) 45-47, 53, 58, *64 
6/13 ->  Integration (iv) 65 - 71 odd 
6/13 -->   VI.B: 13,14 
6/14--> Read  VI.C 
6/14 --> p468 :19, 23, 33, 37, 51 
6/14 -> Read about the inverse tangent function on p472-3. Do:7.5 , 2a,3a,5b, 16
          Assignments and recommended problems II 
6/18--> VI.D  1-4; 9-13; 21 *(22,23) 
6/18--> 7.5 (i) 25-27,34,38, *58 
       (ii) 59, 62, 64, 67, 69, 70, 74*, 75* 
             (iii) 22, 23, 24, 29, 20, 47, 48, 63, 68 
6/19--> Read VII.C 
6/19-->  8.1 ( integration by parts)  (i) 1-11 odd; 33, 51, 54 
6/20-->      (ii) 15, 21, 23, 25, 29, 30, 41, 42, 45, 46 
6/20--> 10.3  (separation of variables) 1,3,4,7, 9, 10, 15 
6/21 -->  10.4. (growth/decay models) (i) 1-7 odd ;  
6/21 -->                   (ii) 9-11; 
6/25->                    (iii) 13,14, 17 
6/21->       10.5  (logistic models) 1, 5, *(11,12 POW?) 
6/25->       8.7 (numerical integration) (i) 1,4, 7a, 11(a,b), 27 ( n= 4, 8), 33a 
6/27->          (simpson's method) (ii) 7b, 11c, 31, 32, 35, 36, *44, 29 
                  More help on Simpson's rule, etc can be found in  V.D 
 
 
 
 
 

 

  Assignments and recommended problems III
6/25->      Begin to Read VII.F(rational functions) 
6/26 -> 8.4 (i) 13,14, 29 
6/28->      (ii) 15, 16, 17, 20, 21 changed 6/26  
7/9->         (iii) 25, 31, 35, 36, 62 
6/26-> 8.8 (improper integrals) (i) 3, 5,7,8,9, 13,21, 41 
6/27->               (ii) 27-30, 33,34, 37,38 
7/2 ->              (iii) 49, 51, 55, *60, 61, 57, 71 
7/9 ->Read IXA 
7/10 ->      IXA:  1-3, 4, 6, 8, 9, 10 
7/10 -> Read IX B 
 7/11-12-> IX B: Problems  1,2,4, 5, 7, 11, 13,14, *23 
7/12->IX.C:   (i) 1-5 
7/12->IX.C    (ii) 6-8 
7/13-> IX.C   (iii) 11,13,15-17 
7/16-> IX.D: 1,3,5,8,10, 14, 15

7/17->read 12.1 pp 727-729, examples 5-8 (sequences converge)also  X.A 
7/18->    12.1: 3-23 odd 
7/18 -> read 12.2 pp 738 -741 (series- geometric series) 
7/19-> 12.2  (i) (series- geometric series): 3, 11-15, 35-37, *51 
7/19 ->   read 12.2 pp 742-745  
7/23->(ii) 21-31 odd, 41- 45, 49, 50 
7/23-> read 12.3:  
7/24->       (i) 1, 3-7 
7/24->           (ii) 9-15 odd 
7/23 Optional: Read X.B1_4 

7/17 -> 8.2 (trig integrals) (i) 1-5, 7-15 odd 
7/23->     (ii) 21-25 odd, 33, 34, 45, 44, 57, *(59-61) 
8.3 (trig subs) 
7/30->      (i) pp 517-519 middle: 2,4,7,11 
7/31->        (ii) pp 519-520: 3,6, 19, 9 
8/1->       (iii) pp 521-522: 1,5, 21, 23, 27,  29 
Ch 8 review problems: 1-11 odd, 33, 35

 Assignments and recommended problems IV
 7/30-> Read 7.7 p 487 note 3 : (i) 5-11 odd 
 7/31->       Read examples 1-5: (ii) 21, 27, 29, 15, 23, 18, 33 
 8/2 ->  read examples 6-8   (iii) 39-43 odd; 47-51 odd, 67, 71 
  8/6->      (iv) 55, 57; 63; 69, *96, *97 
8/7-> 11.6 : read pp 709-10 (i) 1-7 odd; 27, 29
 
8/7->       read pp 711-12(ii) 11-14; 31,33 
->         (iii) 19-22; 37,39; 47, *50 
8/7->    9.1 :  1,3; 19, 21 
    9.2?:  5, 7, 9 
    9.5 : 1, 3, *7

7/31?-> 12.4: (comparison test) (i) 3-7 
->           (ii) 9-17 odd 
7/30-> 12.6:  Use the ratio test to test for convergence. 2, 17,23,20, 29, 31, *34 
7/30-> read 12.6 through example 5. 
8/1->12.6: 3-9 odd, 19,20, *(31,32), 33, 35 
8/1-> Optional: Read X.B5 
7/30 -> 12.5: 3-11 odd; 21, 23, 27, *35 
8/2-> 12.7: 1-11 odd 
8/2-> Optional: Read XI.A 
8/6-> 12.8: 3-11 odd 
8/6 Read only->12.9 
 ->12.9: 3-9 odd, 25, 29 
8/8->12.10: 31,35,56, 41, 45, 57, 58

 
Tentative Schedule for Summer, 2001 (Subject to change) 6-11-01
Week Mon. Tues. Wed. Thurs.
1 6/4 Introduction & Review 6/5 Differential equations and Direction Fields IV.D 6/6 Euler's Method IV.E 6/7 7.2 The natural exponential function. I.F.2; e and y = exp(x) 
Models for (Population) Growth  and Decay: y' = k y; y(0)=1. k = 1.VI.A
2 6/11 More on the exponential function.VI.A 
The natural logarithm function.I.F.2  y = ln (x) and ln(2) 
6/12 Models for learning. 
y' = k / x; y(1)=0. k =1; VI.B 
logarithmic differentiation. 
7.3 & 7.4, 7.2* 
6/13.   Connections: 7.4* VI.C 
ln(exp(x)) = x 
exp(ln(y)) = y 
The Big Picture
6/14 Breath...Arctan.VI.D
3 6/18 Begin Integration by parts. 8.1 and VII.C. 6/19 More integration by parts. 
Separation of variables. 10.3
6/20 Growth/Decay Models. 10.4 . 
The Logistic Model 10.5
6/21 Numerical Integration.(Linear) 
Begin Integration of rational functions VII.F
6/25 Integration of rational functions I. 
Improper Integrals I
6/26 Improper Integrals II. 
More Numerical Integration. (quadratic) V.D
6/27 Rational functions II.  6/28 Not on Exam I 
Improper Integrals III
5 7/2 NOT ON EXAM I  
 Rational functions III. VII.F
7/3Exam I Covers [6/4,6/27] 7/4  Indep. Day 
NO CLASS
7/5 NO Class (Replaced by class on 7/13)
6 7/9 
Taylor Theory I. IXA 
Taylor theory II.Applications: Definite integrals and DE's
7/10 
Taylor theory III.IXB
7/11 Taylor theory IV. IX.C 7/12 IX.D 
Finish Taylor theory.  Discuss Math'l Induction.
7/13 Finish Taylor theory. Makeup class for 7/5
7 7/16 Trig Integrals I [sin&cos] 7/17Begin Sequences and series X.A 
Geometric sequences. Sequence properties.
7/18 Use of absolute values. Incr&bdd above implies convergent. 
Geometric series.
7/19 . Trig Integrals II 
[sec&tan] 
Geometric and Taylor Series. Series Conv. I divergence test
8 7/23 NOT ON EXAM II 
Series Conv. II 
positive series & Integral test
7/24 NOT ON EXAM II 
Series Conv. III Positive comparison & ratio test 
7/25  Exam II Covers [6/22,7/19] 7/26 Trig substitution I (sin) L'Hopital's rule I 
Series Conv. IV(alt Series)
9 7/30 
Trig substitution(tan)
Inverse Functions (Arcsin) 
L'Hopital's rule II
7/31 
Trig substitution III ( sec) 
Series Conv. V Absolute conv and general ratio test
8/1 
L'Hopital III 
Power Series I (Using the ratio test - convergence)XI.A
8/2 Series Conv.VI 
cond'l conv and alternating series 
L'Hopital IV 
Power Series II (Interval of convergence)XI.A
10 8/6 Power Series III 
(DE's and Calculus) 
Conics I Intro to loci-analytic geometry issues (parabolae, ellipses) 
Arc Length VIII.B
8/7 L'Hopital IV (proof?) 
Conics II hyperbolae 
8/8 Review & Summary of Series Calculus. 
Probability and calculus?
8/9  Final Examination
Back to Martin Flashman's Home Page :) Back to HSU Math. Department :}


Summer, 2001                 COURSE INFORMATION              M.FLASHMAN
MATH 110 : CALCULUS II                      MTWR 12:00-13:15 P.M. SH 128
OFFICE: Library 48                                        PHONE:826-4950
Hours (Tent.):  1:30-2:20           AND BY APPOINTMENT or by CHANCE!
E-MAIL:flashman@axe.humboldt.edu WWW:      http://www.humboldt.edu/~mef2/
***PREREQUISITE: Math 109 or permission.


Back to Martin Flashman's Home Page :)

Back to HSU Math. Department :}