Martin Flashman's Courses
Math 110 Calculus II Summer, '00 
MTWR 10:00-11:20 SH 128
Final exam- 8-9-00  10:00-12:00

Back to Martin Flashman's Home Page :) Last updated: 7/27/00
Summer, 2000     Problem Assignments(Tentative as of 5-6-00)       M.FLASHMAN
MATH 110 : CALCULUS II                   Stewart's Calculus 4th ed'n.
 (*= interesting but optional)
 
Assignments and recommended problems I 
Background Reality Check
 6/1 -->IV.D 1-11 odd  23. 24
 6/1--> 4.10. 43, 45, 47, 48, 51, 52
 6/5 -->10.2  (i) 2-6, 9, 11, *15
        6/5-->   (ii) 21, 23
6/5->  IV.E 5-9 odd (a,b), 20 21,24
6/5 Read pp 416-422 exponential functions, I.F.2 , 428-430(review of logs)
6/6-->I.F.2   3, 4
6/6-> Read  VI.A, do7.2 (i) 29, 33, 34, 37, 47-51, 57, 61, 63, 53
6/7->               (ii)      Problems lost:  60, 62, 70, 71-77 odd, 79, 80, 85, 86
6/6-> 7.3 Review of logs 3-17 odd, 31, 33, 35, 41, 47, 59-61, *78
6/7--> Read VI.B.
6/8 -> 7.4 (i) 3-9 odd, 25, 28, 8, 22
6/8 ->     (ii) 15, 13, 35, 52
6/12->  Log diff'n (iii) 45-47, 53, 58, *64
6/8 ->  Integration (iv) 65 - 71 odd
6/8 -->   VI.B: 13,14
6/8--> Read  VI.C
6/13 --> p468 :19, 23, 33, 37, 51
6/13  Read about the inverse tangent function on p472-3. Do:7.5 , 2a,3a,5b, 16
          Assignments and recommended problems II
6/14--> VI.D  1-4; 9-13; 21 *(22,23)
6/14--> 7.5 (i) 25-27,34,38, *58
       (ii) 59, 62, 64, 67, 69, 70, 74*, 75*
             (iii) 22, 23, 24, 29, 20, 47, 48, 63, 68
6/15--> Read VII.C
6/15-->  8.1 ( integration by parts)  (i) 1-11 odd; 33, 51, 54
6/19-->      (ii) 15, 21, 23, 25, 29, 30, 41, 42, 45, 46
6/19--> 10.3  (separation of variables) 1,3,4,7, 9, 10, 15
6/20 -->  10.4. (growth/decay models) (i) 1-7 odd ; (ii) 9-11;
6/21->                    (iii) 13,14, 17
6/21->       10.5  (logistic models) 1, 5, *(11,12 POW?)
6/21->       8.7 (numerical integration) (i) 1,4, 7a, 11(a,b), 27 ( n= 4, 8), 33a
6/27->          (simpson's method) (ii) 7b, 11c, 31, 32, 35, 36, *44, 29
                  More help on Simpson's rule, etc can be found in  V.D
 
 
 
 
 

 

  Assignments and recommended problems III

6/21->      Begin to Read VII.F(rational functions)
6/22 -> 8.4 (i) 13,14, 29
6/28->      (ii) 15, 16, 17, 20, 21, 25
6/29->         (iii) 31, 35, 36, 62
6/22-> 8.8 (improper integrals) (i) 3, 5,7,8,9, 13,21, 41
6/28->               (ii) 27-30, 33,34, 37,38
7/5->              (iii) 49, 51, 55, *60, 61, 57, 71
7/5 ->Read IXA : Problems due 7/6: 1-3
7/10->       IXA: 4, 6, 8, 9, 10
7/10-> Read IX B
7/11->     IX B: Problems due 7/11 (i)1,2,4, 5, 7, 11, 13,14, *23
7/12->IX.C:   (i) 1-5
7/12->IX.C    (ii) 6-8
7/17-> IX.C   (iii) 11,13,15-17
7/13-> IX.D: 1,3,5,8,10, 14, 15

7/17->read 12.1 pp 727-729, examples 5-8 (sequences converge)also  X.A
7/17->    12.1: 3-23 odd
7/18 -> read 12.2 pp 738 -741 (series- geometric series)
7/19-> 12.2  (i) (series- geometric series): 3, 11-15, 35-37, *51
7/20->   read 12.2 pp 742-745  (ii) 21-31 odd, 41- 45, 49, 50
7/24-> 12.3: (i) 1, 3-7
7/24->           (ii) 9-15 odd
Optional: Read X.B1_4

7/19-> 8.2 (trig integrals) (i) 1-5, 7-15 odd
7/20->     (ii) 21-25 odd, 33, 34, 45, 44, 57, *(59-61)

8.3 (trig subs)
7/25->      (i) pp 517-519 middle: 2,4,7,11
7/27->        (ii) pp 519-520: 3,6, 19, 9
7/31->       (iii) pp 521-522: 1,5, 21, 23, 27,  29
Ch 8 review problems: 1-11 odd, 33, 35

 Assignments and recommended problems IV

 7/27-> Read 7.7 p 487 note 3 : (i) 5-11 odd
 7/31->        Read examples 1-5: (ii) 21, 27, 29, 15, 23, 18, 33
 8/1 ->  read examples 6-8   (iii) 39-43 odd; 47-51 odd, 67, 71
 8/2 ->      (iv) 55, 57; 63; 69, *96, *97
8/3-> 11.6 : read pp 709-10 (i) 1-7 odd; 27, 29
8/3->       read pp 711-12(ii) 11-14; 31,33
8/7->         (iii) 19-22; 37,39; 47, *50
    9.1 :  1,3; 19, 21
    9.2?:  5, 7, 9
    9.5 : 1, 3, *7

7/31-> 12.4: (comparison test) (i) 3-7
->           (ii) 9-17 odd
7/31-> 12.6:  Use the ratio test to test for convergence. 2, 17,23,20, 29, 31, *34
8/1-> read 12.6 through example 5.
8/1->12.6: 3-9 odd, 19,20, *(31,32), 33, 35
8/1-> Optional: Read X.B5
8/2 -> 12.5: 3-11 odd; 21, 23, 27, *35
8/7-> 12.7: 1-11 odd
8/2-> Optional: Read XI.A
8/3-> 12.8: 3-11 odd
8/7->12.9: 3-9 odd, 25, 29
8/7->12.10: 31,35,56, 41, 45, 57, 58
Week Mon. Tues. Wed. Thurs.
1 5/29 Mem. Day
NO CLASS
5/30 Introduction & Review 5/31 Differential equations and Direction Fields IV.D
[Demos from Bradley-Smith 1 2]
6/1 Euler's Method IV.E
2 6/5 7.2 The natural exponential function. I.F.2; e and y = exp(x)
Models for (Population) Growth  and Decay: y' = k y; y(0)=1. k = 1.VI.A
6/6 More on the exponential function.VI.A 6/7.  The natural logarithm function.I.F.2  y = ln (x) and ln(2) 
Models for learning.
y' = k / x; y(1)=0. k =1;
6/8  VI.B
logarithmic differentiation. 
7.3 & 7.4, 7.2* 
3 6/12 Connections: 7.4* VI.C
ln(exp(x)) = x
exp(ln(y)) = y
The Big Picture
6/13Arctan.VI.D 6/14 Begin Integration by parts. 8.1 and VII.C. 6/15 More integration by parts.
Separation of variables. 10.3
.
6/19Growth/Decay Models. 10.4 .
The Logistic Model 10.5
6/20 Finish the Logistic.
Numerical Integration.(Linear)
Begin Integration of rational functions VII.F
6/21 
Integration of rational functions I.
Improper Integrals I
6/22 [Not on EXAM I]More Numerical Integration. (quadratic) V.D
5 6/26 Exam I Covers [5/30,6/21] 6/27
Rational functions II. Improper Integrals II.
6/28 Rational functions III. VII.F 6/29 Improper Integrals III
Taylor Theory I. IXA
6 7/3 NO CLASS 7/4 Indep. Day
NO CLASS
7/5 Discussed Math'l Induction.
Taylor Theory I. IXA
7/6 Taylor theory II.Applications: Definite integrals and DE's
7 7/10
Taylor theory III.IXB
7/11
Taylor theory IV. IX.C
7/12 IX.D
Finish Taylor theory. 
7/13 Begin Sequences and series. 
8 7/17 Geometric sequences. Sequence properties.Use of absolute values. Incr&bdd above implies converent. Begin geometric series. 7/18  Trig Integrals I [sin&cos] 
Geometric and Taylor Series. Series Conv. I 
7/19 Trig Integrals II
[sec&tan]
Series Conv. II divergence test 
7/20 (positive series & Integral test) Series Conv. III
9 7/24 Trig substitution I (sin) 7/25 Exam II Covers [6/22, 7/20] 7/26 
L'Hopital's rule I
Trig substitution II (tan ) 
Other Inverse Functions (Arcsin)
7/27 Positive comparison & ratio test Series Conv. IV
L'Hopital's rule II
Trig substitution III ( sec)
10 7/31  Series Conv. V Absolute conv and general ratio test, 
L'Hopital III
Power Series I (Using the ratio test - convergence)XI.A
8/1 Series Conv.VI
cond'l conv and alternating series 
L'Hopital IV
8/2 Power Series II (Interval of convergence)XI.A
Conics I Intro to loci-analytic geometry issues (parabolae, ellipses)
8/3 
Power Series III 
(DE'sand Calculus)
Conics II hyperbolae
11 8/7Review&Summary of Series Calculus 8/8 Review of quizzes 19&20. Arc Length VIII.B 8/9 Final Examination

Back to Martin Flashman's Home Page :) Back to HSU Math. Department :}



Summer, 2000                 COURSE INFORMATION               M.FLASHMAN
MATH 110 : CALCULUS II                      MTWR 10:00-11:20 P.M. SH 128
OFFICE: Library 48                                        PHONE:826-4950
Hours (Tent.):  *******           AND BY APPOINTMENT or by CHANCE!
E-MAIL:flashman@axe.humboldt.edu WWW:      http://www.humboldt.edu/~mef2/
***PREREQUISITE: Math 109 or permission.


Back to Martin Flashman's Home Page :)

Back to HSU Math. Department :}