Martin Flashman's Courses
Math 109 Calculus I Spring, '02
MWF 2:00-3:10 WFB 258
Back to Martin Flashman's Home Page :)
Last updated: 12/16/01

Spring, 2002               MATH 109 : CALCULUS I         M.FLASHMAN 
Stewart's Calculus 4th ed'n. 
Assignments and recommended problems 
Date Due Reading Problems ( *= interesting but optional) Optional
1-25 1.1 1,2,10,13,15,17,21,22,45, 47, 48, 51, 53  
1-25

Appendix B
rev. sheet 1-3,6,13,15,16,18,19

7-10; 17-20; 21-35 odd; 62
1-28 1.2 1-5;8,10,11  
1-30 

1-30
1.3

0.B2 [on-line]
 3;5; 54, 55

# 19, 20, 21
*65
1-30 1.4 1,3,37  
2-1 0.C [on-line] [Models and Mathematics- Probability ]  
2-4(i) 
2-4(ii)
2.1 Read for 2-1-02 Geom (i)1,2,4
Motion  (ii) 5,8
 
2-4(i)
2-6(ii)
2.6 (i)1(a),2(a),3,5(ai,b),6(ai,b),9 
(ii)11,13,15,17-19
 
2-6(i)
2-8(ii)
2-20(iii)
3.1 (i)1-3,5,13-16
(ii)7,8,26,29 
(iii)11,19-21,23
 
2-8(i)
2-20(ii)
3.2 (i)1,3-7; 17-23 odd
(ii) 31,32,37,42
 (ii) 41
2-6 and 8 Appendix D
Especially formulae 6-8,10,12,13
   
2-18 CH. 5.1-5.3 - TRIGONOMETRIC       FUNCTIONS (VIDEO)PRECALCULUS #8
CH. 5.4-5.6 - TRIGONOMETRIC      FUNCTIONS (VIDEO) PRECALCULUS #9
Review of trigonometry on reserve in the library for Math 115.
2-13(i)
2-15(ii)
2-18 (iii)
3.4 (i) 1-3;11
(ii) 23,27,28,*33
(iii) 12, 16, 20, 31 
 
2-11(i)
2-13(ii)
2-15 (iii)
3.3  (i)1-5, 7-15 odd, 28-30,43
(ii) 8-16 even, 19-22; 55a, 56(a,b), 59a, 61-63, 66-68
(iii) 83, 18, 23-25, 31; 49, 53, 54, 55 (b,c), 58, 65, 73
*74
2-13 first summaries due.
2-25(i)
2-27(ii)
 2.5 (i) pp 104-106
(iii) pp 111-2
(i)3,4,7,17-20
(ii) 34,37, 38
(iii) 41,43,45,48, 59
 (iii) 55,56
2-20(i)
2-22(ii)
3.5
Read web materials on trigonometric derivatives.
(i) 1-3,5,10,11,13,22,23,28,31
(ii) 4,6,9,21,26,33,45a
(iii) 35,36,38,39,43 
 *34
2-27 POW #2 is due.
2-27 (i)
3-1 (ii)
3.6 The Chain Rule! (i) 7-14 use Leibniz notation.
(ii) 16, 17,21,27,31,37,45,51,53,55, 59, 63
(ii)*57,*70
POW #3 is due.
2-27 again? 3.2 p142-3.Differeniability and continuity  (ii) 31,32,37
3-6(i)
3-8 (ii)
3.7
Read web materials on implicit differentiation.
(i) 5-10, 15, 25, 26
(ii) 29, 36, 37, 41, 42, 51
*38, *53
3-1 (i)
3-4 (ii)
3.8 Higher Order Derivatives
(i) pp192-194
(ii)pp 195-196
(i) 1-15 odd, 21
(ii) 35,36,43,44,47,51, 53 *(57,62)
3-1(iii) 2.5 (ii) 34,37, 38
(iii) 41,43,45,48, 59
(iii)55, 56
3-4(i)
3-8(ii)
4.9
Read web materials on Newton's Method.
(i) 1,3,5-7
(ii)11,15,16,25,*26,*27
3-14 Examination #1  Covers all assignments through 3-11.
1.1-1.4, 2.1,2.5,2.6, 3.1-3.8, 3.9,4.9,
0.B2 , 0.C
3-11(i)
3-13(ii)
3.9 Related rates. (i)3,5,11
(ii) 7,10,12,16,19,31,32
3-27(i)
3-29(ii)
4.1 (i) 3-6;31-41 odd,47,49,11,34,48
(ii) 13, 51, 53, 57, *65
3-27(i)
3-29(ii)
4-3(iii)
4-10 (iv)
4.7 (i) 1,2,7
(ii) 9, 15, 17, 29
(iii) 24, 34, 49, 53
(iv) 48,50
Read for 4-8
Do for 4-10
4.2 7,8,11,23, 25 
4-3(i)
4-5(ii)and (iii)
3.10 (i)  205-207
(ii) 209-210
Read web materials on differentials 
(i) 5,7,9
(ii) 15-17, 21-25 odd, 31,33 
(iii) 42-45
3-29(i)
4-8 (ii)
4.3(i) 240-242
(ii) 243-246
(i)5,6, 8(a,b), 11(a,b), 25(a,b), 27 (a,b)
(ii)7,8, 11c, 17, 21-23, 25(c-d), 27(c,d), 47
4-10(i)
4-12(ii)
4.4 (i) 249-255 (i) 3,4, 11-15, 31-34
(ii) 39-41, 47-49, 55, 56
4-12(i)
4-15(ii)
4.5 Read Examples 1-3! (i) 1-11 odd, 31, 36
(ii) 27, 32, 35, 38
4-15 (i) 4.6 (i) Read Examples 1-3!
(ii) Read Example 4
(i)1,7
(ii) 10, 21
 
4-15 Read only.Look at problems.
4-17 do!
IVA (On-line)
A java graph showing f (x)=P'(x) related for f a cubic polynomial
1(a,d,e,f,h),4,5(a,b),10
4-17 (i)
4-19 (ii)
4.10  (i) 1-3, 5-11 odd,15-17, 25-28
(ii)31-37 odd,41,47,51,52, 53, 55, 57
4-17 IVB (On-line) Read
4-24(i) (Review!) 10.2 (i) 620-623 
     (ii) 624-626
(i)3-6,7,9, *15, *17
(ii) 19a, 21, 24
4-19 IVD (on-line) 1-11 odd
4-22 (i)
4-24 (ii)
IVE (on-line) (i)1,2 
(ii) 5 (a,b), 7(a,b), 11(a,b)
4-22 IVF READ  
4-24 IVF 1,3,5,13,15,17,19,21,23
4-24 (i)
5-3 (ii)
5.3  (i) 17-23 odd (Use F T of Calc)
(ii) 39,49,51
4-24 (i) (review!)
4-26 (ii)
4-29 (iii)
5.4 (i) 1-9 odd,10
(ii)17-27 odd, 45
(iii) 47-51 odd,53,55
April 25 Examination #2 Covers all assignments though *April 22* (Mainly material not covered in Examination #1) 3.9,3.10, 4.1-4.7, 4.10, 10.2, IVA, IVB, IVD, IVE
4-29 (i)
5-1 (ii)
5.5 (i) 356-358
(ii) 359-361
(i) 17-23
(ii) 37-41
5-1(i)
5-3 (ii)
5.2 (i)2,5,6,7,8,15-18,29
(ii)31-35(odd);39,43-46,47-57(odd),63
*30 
5-3(i)
5-6 (ii)
6.1 (i) pages 371-374 
(ii) pages 374-376
(i) 1,2,7,11,15,16 
(ii)3,4,17,19 , 45,29,33,39,41
*47
5-8 (i)
5-10 (ii) and (iii)
6..2 (i)1,3,4,7
(ii)19,23, 31, 32,51,52
(iii) 5, 7, 10, 39, 40
*61,*59
6.3 (i)1, 3, 7, 8, 28
(ii) 9, 13, 21, 29 , 41, 43
5-6 (i) 6.4 (i) 3,5, 8
(ii) 11,13
5-8  6.5 1,3,5,13-15
5-3 (i)
5-10 (ii)
5.3 (i)1,3,4, 5,7
(ii) 11, 13, 39,  49 
*45
2.4?

Math 109 CHECKLIST FOR REVIEWING FOR THE FINAL     M. Flashman     * indicates a "core" topic.
         I.  Differential Calculus:

           A. *Definition of the Derivative
                Limits / Notation
                Use to find the derivative
                Interpretation ( slope/ velocity )

           B. The Calculus of Derivatives
               * Sums, constants, x n, polynomials
                *Product, Quotient, and  Chain rules 
                *Trignometric functions
                Implicit differentiation
                Higher order derivatives

           C. Applications of derivatives
                 *Tangent lines
                 *Velocity, acceleration, rates ( related rates)
                 *Max/min problems
                 *Graphing: * increasing/ decreasing 
                           concavity / inflection
                           *Extrema  (local/ global) 
                                      Asymptotes
                The differential and linear approximation 
                 Newton's method

           D. Theory
                *Continuity  (definition and implications)
                *Extreme Value Theorem 
                *Intermediate Value Theorem
                *Mean Value Theorem

  II. Differential Equations and Integral Calculus:

           A. Indefinite Integrals (Antiderivatives)
                *Definitions and basic theorem
                *Simple properties [ sums, constants, polynomials]
                *Substitution
        *Simple differential equations with applications

   B. Euler's Method, etc.
                Euler's Method
                *Simple differential equations with applications
        Tangent (direction) fields/ Integral Curves

           C. The Definite Integral
                 Euler Sums/Definition/ Estimates( endpoints/midpoints)/ Simple Properties / Substitution
              *Interpretations  (area / change in position)
              *THE FUNDAMENTAL THEOREM OF CALCULUS - evaluation form
               THE FUNDAMENTAL THEOREM OF CALCULUS - derivative form 

           D. Applications
                *Recognizing sums as the definite integral 
        *Areas (between curves). 
         Average value of a function.
         Work (springs)
         Volumes of revolution (discs).
 

 

Bonus Essay question for final:
Suppose P(t) is a positive continuous function on [a,b] that gives the velocity at time t of an object moving on a straight line. Explain using the mean value theorem why there is some number c between a and b where

.

Interpret this equation with either 

(i) a discussion of the  velocity and position of the object with the position function given by  or 
(ii) a discussion of the area under the graph of Y=P(x) above the X-axis from X=a to X=b and the area of a rectangle with height P(c) and width (b-a).

 

Back to Martin Flashman's Home Page :) Back to HSU Math. Department :}



Spring, 2002                                COURSE INFORMATION                                    M.FLASHMAN
MATH 109 : CALCULUS I                                MWF 2:00-3:10 WFB  258
OFFICE: Library 48                                        PHONE:826-4950
Hours (Tent.): MWF 3:30-4:30  TR 10:15-11:20  AND BY APPOINTMENT or chance!
On-line Math chat : I will frequently attend my math chatroom Tuesday and Thursday evenings at about 9:00 pm.
E-MAIL: flashman@humboldt.edu               WWW:  http://www.humboldt.edu/~mef2/
***PREREQUISITE: Math 115 or Math code 50 or permission. See also Teresa (Tami) Matsumoto's CALCULUS PREPARATION Information Page .


Back to Martin Flashman's Home Page :)

Back to HSU Math. Department :}