Martin Flashman's Courses

Math 106 Calculus for Business and Economics
Spring, '00
Final Examination:
Tuesday 5-9-00 15:00-17:00 or self scheduled- See Prof. Flashman

MTWR 1500-1550 SH 128

Back to Martin Flashman's Home Page :)
Last updated: 1/19/00
Spring, 2000     Problem Assignments(Tentative as of 1-15-00)       M.FLASHMAN 
Section   Problems (*= interesting but optional; SC= Self-Check) 
-------   --------------------------------------
Assignments and Recommended problems I
1/19-> rev. sheet
1.1: 1/20-> 1-23 odd; 45-51 odd;111,112,115,116 
1.2: 1/20-> (i)1-4,13-15,23-25,33-36   
       1/24->(ii)53-55,65-67,89,95,99 
1.3: 1/24-> 1-19 odd 
1.4: 1/25 ->(i)1-14;17,23,27-30,45,51,53     1/26-> (ii)55-57,69,71,73 
2.1: 1/26 -> (i)SC:1-3; 1-5,9 (also draw T-figs to illustrate these functions);13,15,31
     1/27 -> (ii)33-43 odd (also sketch T-figs);55,58,59,63,65,69, *73 *
2.1T:  1-5 odd; 11, *43 2.3: 1/31 ->(i)15-18;23,26,*28,29   
2/1->   (ii)32,33,36,37,41,47,48
Assignments and recommended problems II 
2.6 2/2-> (i) 2,3,5, *8,13,15
    2/3-> (ii) 27, 29, 19, 21, 31, 34, 51 
   2/7-> (iii) 30, 33

*2.6T:  1-9 odd

3.1 2/7-> (i) 1-21 odd, 22, 27,30, 35, 36, *67
    2/8-> (ii) 41-43,46,49; 55,57, 62, 63


3.2 2/9-> (i) 1-9 odd, 12, 31, 32, 39
    2/10-> (ii) 15-23 odd, 33, 37, 46
    2/15-> (iii) 49,51,54, 58
3.3 2/16->(i) 1-9 odd;24,47
    (ii) 29,31,, 53, 57,65,*69
3.4 2/15-> (i)1-5
    2/16-> (ii) 11, 13,16, 17, 19
BREAK>>>> DUE 3/20 Read handout plus pp 221-225. (iii) 23-27 odd,29,30
3.5 2/17->  1-13 odd, 21-24, 29, 31, 32
3.6 2/17-> (implicit diff'n) (i) 1,3,5, 9-11, 31
    2/22-> (related rates) (ii) 15, *29, 39, 43-45,48
    2/22->  (iii) 51, 55
3.7 2/23-> (i) 1-9 odd, 15-17, 27,29
    2/24->  (ii) 33,35-38, 41,43
2.4 2/28-> 1-9 odd
2.5 2/28-> (i)1-19 odd,39,41
    2/29-> (ii) 43-49 odd, 63, 71, 73, 76, 80
    2/29-> pp 130-133 IVT & bisection   (iii) 87, 88, 93
2.6 pp156-158 "Diff implies cont" *57

    Assignments and recommended problems III
4.1   3/1->  (i)1-7 odd, 13-17, 37-40, 44-47
      3/2-> (ii) 21-27 odd, 49- 57 odd, 73, 77
      3/6->  (iii) 60-64, 72
4.4   3/2-> (i) 2,5,7,8,15,17,19,39, 41
      3/6->   (ii) 19-31 odd ; 45,49, 52, *55
4.5   3/8->   (i) 1,3, 15 
     3/20->  Read Example 5      (ii) 5, 22
4.2  3/8-> (i) 1-11 odd, 16, 23-27 odd
     3/20-> (ii) 26, 45-49 odd, 75, 79
       
4.3  3/21->(i) 29, 30, 32,33,35, 37,43
     3/22->(ii) 40,45,65, 68
     3/23->(iii) asymptotes: 1-15 odd,20-22, 61
                 Assignments and recommended problems IV
5.1 3/21 -> READ 362-364 (i) 1,4,7,10,13,16,19,22,25
    3/22 -> (ii)27,29,31,32
5.2  3/23->    (i) 1-25 odd
     3/27->  (ii) 20,22,27,29,31, 33-37 odd
5.3  3/29-> (i) 1-11 odd
     3/30-> (ii) 13-23 odd
5.4  3/29->   (i) 1-17 odd,6,18, 29
     3/30-> (ii) 14,23,27,31,34,35,41, 45, 46
     3/30->  (iii) 49, 53
5.5  4/3-> (i) 1-17 odd, 6,18, 29
     4/3->   (ii) 4, 14, 35, 37, 47, 49, 53, 55
     4/4-> Handout problems on logs and exponentials.
5.6  4/5->  3,7,*9, 11, 15
 
6.1  4/5-> (i) 1-19 odd
     4/6-> (ii) 23-30, 51-57 odd, 61
     4/6-> (iii)65, 67, 69, 79 
IV.E  4/11-> 1a,c; 3a,c; 5a,b; 13 a,b; 21
IV.F  4/17-> 1, 3, 7,9, 19, 21.
6.4   4/17-> (i) 5-11 odd, 23-29 odd

       Assignments and recommended problems V
6.4    4/18->(ii)10, 12, 19-22, 31-37 odd
       4/19-> (iii) 41-44
6.2    4/18->  (i) 1-13 odd
       4/19-> (ii) 19-27 odd, 6,8, 51,53
             (iii) 45-47, 57, 59, 63
6.5    4/19-> (i) [sub.] 1-11 odd
       4/20-> (ii) 2,4, 16, 29-33 odd
       4/20-> (iii) 41, 42, 43
6.6    4/20-> area (i) 1-7
       4/24-> (ii) 9-23 odd, 35-37
            (iii) 27-30, 44
6.7    4/24-> surplus (i) 1-7 odd
       4/25-> value   (ii) 9-17 odd
7.4    4/25->(i) 1-7 odd,15, 17, 19
       5/2-> (ii) 35, 37, 39,45
8.1    4/26-> 1-7 odd; 19, 20,25, 28,29, 35
8.2    4/27-> 1-5,11-17 odd; 23-29 odd, 41,43
8.3     5/1->  21, 23, 25
        5/4*-> 1-7 odd
8.4     5/3-> 1,3,*16
Tentative Schedule of Topics  (Subject to change) 1-20-00 
 
Monday Tuesday
Wednesday
Thursday 
Week 1 1/17 M.L.King Day
No Classes
1/18 Course Introduction 1/19 Numbers, Variables, Algebra Review 1.1&1.2 1/20 More Algebra review and The coordinate plane1.3 Begin Functions.
Week 2 1/24 More Algebra review.
Lines 1.4 Begin Functions. 2.1
1/25 Functions and models. 2.1 & 2.3 1/26 The fence problem: functions, graphs, technology. 1/27 Slopes, rates and estimation.
Week 3  1/31 The Derivative I 2.6
Motivation: Marginal cost, rates and slopes.
2/1 The Derivative II 2.6  2/2 Derivative Calculus I 3.1
Back-up: limits 2.4
2/3 Derivative Calculus I 3.1
Week 4 
First Summary due:2/8 
2/7 Calculus II 3.2 2/83.1 Justify Sums.
3.2 product rules
2/9 3.2 Justify product; quotient rule. 2/10 3.3 The Chain Rule 
3.4 Marginal Applications
Week 5
First POW due:2/17
2/14 Class Cancelled (power failure) 2/15 3.3 More Chain Rule  2/16 3.5 
Higher order Derivatives 
Implicit Differentiation 3.6
2/17 Related Rates 3.6 
Week 6
Second Summary due: 2/22
2/21 More related rates. Start Differentials. 2/22 Differentials 3.7  2/23 Back-up: limits and continuity 2.4 & 2.5  2/24 More on Continuity. 
Week 7
POW II due: 3/1
2/28 IVT.2.5 2/29 
First Derivative Analysis 4.1
3/1 3/2  Optimization I 4.4
Curve Sketching I 4.3
Week 8
Summary III due: 3/7
3/6 Review
Optimization I 4.4
3/7 DARTS?
Second Derivative Analysis 4.2
 Optimization II 4.5
3/8 More Optimization 3/9 Examination I (covers through 4.1 and 4.4)
Mid-Term Vacation 3/13 3/14 3/15 3/16
Week 9 3/20 More Curves III 4.3  3/21Start Exponential and Logarithmic functions 5.1 3/22 Logarithmic functions 5.2 3/23 more on logs.
[Review of Exam I]
Week 10 POW III 3/27Interest and value5.3 3/28 Finish Interest. 5.3
Derivatives of exponentials 5.4
3/29 More on exponentials in functions. 5.4 3/30 
derivatives of Logarithms 5.5 
Week 11  4/3
Models using exponentials 5.6
4/4 
Begin Differential equations and integration 6.1
4/5 More on de's and integration 4/6 
Week 12 4/10 Euler's Method IV.E 4/11Euler's Method  and Area 4/12 The definite integral. 6.3
FT of calculus I 6.4 ?
4/13 Examination II (covers from 4.1 to 6.1 )
Week 13 4/17 Substitution 6.2 4/18 More on the definite integral.
Applications 6.5
4/19 More area/ and applications 6.5&.6.6
.
4/20Surplus 6.7 
Week 14 4/24 Value 6.7Improper integrals and value. 7.4 4/25 Intro to functions of 2 or more  4/26 Partial derivatives. 1st order . 4/27 .2nd order partial derivatives. 8.2 
Extremes 8.3 (Critical points)
Week 15 (last wek of classes) 5/1More on improper integrals.
More on value.
5/2  Least Squares. 5/3 
Misc.OtherApplications (volume)
5/4 Integration with technology.
LAST CLASS :)
Week 16 Final Exam Week 5/8 5/9*Final Exam
15:00-17:00
5/10 5/11
*Final examination may be self-scheduled M,T,W, or R. Contact Professor Flashman.



        Math 106, Spring, '00  CHECKLIST FOR REVIEWING FOR THE FINAL     M. Flashman
                                 * indicates a "core" topic.
        I.  Differential Calculus:
           A. *Definition of the Derivative
                Limits / Notation
                Use to find the derivative
                Interpretation ( slope/ velocity )
           B. The Calculus of Derivatives
               * Sums, constants, x n, polynomials
                *Product, Quotient, and  Chain rules               
                *logarithmic and exponential functions
                Implicit differentiation
                Higher order derivatives
           C. Applications of derivatives
                        *Tangent lines
                        *Velocity, acceleration, marginal rates (related rates) 
                        *Max/min problems
                        *Graphing: * increasing/ decreasing 
                           concavity / inflection
                           *Extrema  (local/ global) 
Asymptotes
                The differential and linear approximation 
           D. Theory
                *Continuity  (definition and implications)
                *Extreme Value Theorem 
                *Intermediate Value Theorem
            E. Several Variable Functions
                  Partial derivatives. (first and second order)
                  Max/Min's and critical points.
                                             
        II. Differential Equations and Integral Calculus:
           A. Indefinite Integrals (Antiderivatives)
                *Definitions and basic theorem
                *Simple properties [ sums, constants, polynomials]
                *Substitution
       *Simple differential equations with applications
  B. Euler's Method, etc.
                Euler's Method
                *Simple differential equations with applications
       Tangent (direction) fields/ Integral Curves
           C. The Definite Integral
                 Definition/ Estimates/ Simple Properties / Substitution
                *Interpretations  (area / change in position/ Net cost-revenues-profit)
                *THE FUNDAMENTAL THEOREM OF CALCULUS - evaluation form
                  Infinite integrals         
           D. Applications
                *Recognizing sums as the definite integral  
       *Areas (between curves).  
        Average value of a function. 
                 Present Value.
                 Consumer Savings.             



Back to Martin Flashman's Home Page :)       Back to HSU Math. Department :}                
Back to Martin Flashman's Home Page :) Back to HSU Math. Department :}


Spring, 200                 COURSE INFORMATION               M.FLASHMAN
MATH 106 : Calculus for Business and Economics                MTWR 1500-1550 SH 128
OFFICE: Library 48                                        PHONE:826-4950
Hours (Tent.):  MTWR 10:15-11:30  AND BY APPOINTMENT or chance!

E-MAIL:flashman@axe.humboldt.edu           WWW: http://www.humboldt.edu/~mef2/
***Prerequisite: HSU MATH 42 or 44 or 45 or math code 40.



Back to Martin Flashman's Home Page :)

Back to HSU Math. Department :}