Section 4.2 Logarithmic Functions

Logarithmic Function \(x > 0 \), \(b > 0 \), \(b \neq 1 \)

\[y = \log_b x \text{ if and only if } b^y = x \]

\(\rightarrow \) the exponent we raise \(b \) to get \(x \) out.

\(\left(\text{logs & exponential are inverses} \right) \)

\[\log_b x = y \] \(\Rightarrow \) \(b^y = x \)

\(\log_b b^x = x \)

\(a) \) \(\log_2 16 = 4 \) \(\text{ since } 2^4 = 16 \)

\(b) \) \(\log_{10} 1000 = 3 \) \(\text{ since } 10^3 = 1000 \)

\(c) \) \(\log_5 \frac{1}{125} = -3 \) \(\text{ since } 5^{-3} = \frac{1}{125} \)

Example: Solve for \(x \)

\(\text{Standard Base: } \log_{10} x \)

Assume base 10, like # System (Calc).

\(a) \) \(\log_2 x = -3 \)

\[2^{-3} = x \]

\[\frac{1}{8} = x \]

\(b) \) \(\log_3 243 = x \)

\[3^x = 243 \]

\[3^5 = 243 \]

\[x = 5 \]

\(c) \) \(\log_9 27 = \frac{3}{2} \)

\[\left(x^3 \right)^{\frac{1}{2}} = 27 \]

\[x = 27 \]

\[\frac{3^{11}}{3^3} = 3^8 \]

\[x = 3 \]

Rules of Logarithms

\(b > 0, b \neq 1 \) \(\text{ then } \)

\[\log_b 1 = 0 \]

\[\log_b b = 1 \]

and if \(u \) and \(v \) are positive \(\#s \), we have

\(\rightarrow \) \(\log_b u = \log_b v \text{ if and only if } u = v \)

\(\rightarrow \) \(\log_b(uv) = \log_b u + \log_b v \)

\(\rightarrow \) \(\log_b \left(\frac{u}{v} \right) = \log_b u - \log_b v \)

\(\rightarrow \) \(\log_b b^u = u \)

\(\rightarrow \) \(\log_b u^r = r \log_b u \)
Use logs to rewrite in terms of $\log_3 2$ and $\log_3 5$.

\[
\begin{align*}
\log_3 200 &= \log_3 (2^3 \cdot 5^2) \\
&= \log_3 2^3 + \log_3 5^2 \\
&= 3 \log_3 2 + 2 \log_3 5
\end{align*}
\]

Use properties of logs to simplify (expand using prop's)

a) $\log_5 (2^6 y^4)$

\[
= \log_5 2^6 + \log_5 y^4
= 6 \log_5 2 + 4 \log_5 y
\]

b) $\log_6 \left(\frac{x^5 \sqrt{y}}{2^3} \right)$

\[
= \log_6 x^5 + \frac{1}{2} \log_6 y - 3 \log_6 2
\]
Graphs of logarithmic functions
Exponentials and logs are inverses (Inverses are symmetric w/r/t the line $y = x$)

To find inverse, switch x and y

$y = a^x$

Domain $(0, \infty)$
Range $(-\infty, \infty)$

$y = \log_b x$

\rightarrow Continuous for all $x > 0$
\rightarrow $x = 0$ is a V.A.
\rightarrow The x int $(1,0)$, no y int
\rightarrow For $x > 0$, the graph is increasing when $b > 1$, and $0 < b < 1$ the graph is decreasing.

The Natural Logarithm
Most common (only has one base)
$\log_e x$ and is denoted $\ln x$ "el en of x"

For $x > 0$, $y = \ln x$ if and only if $e^y = x$

Graph $y = \ln x$
e^x and $\ln x$ are inverses

That is

$$e^{\ln x} = x \quad x > 0$$

$\ln (e^x) = x$ for all x (same rules as logs - \ln is just a "special log")

ex. Break down using props of logs

a) $\ln \sqrt[3]{x^2-x}$

$$= \ln (x^2-x)^{1/3}$$

$$= \ln (x(x-1))^{1/3}$$

$$= \frac{1}{3} \left(\ln (x(x-1)) \right)$$

$$= \frac{1}{3} (\ln x + \ln (x-1))$$

ex. $\ln \sqrt[3]{x+1}$

$$= \ln (x+1)^{1/3} x^{-2} (x^2-1)^{-1/2}$$

$$= \frac{1}{3} \ln (x+1) - 2 \ln x - \frac{1}{2} \ln (x^2-1)$$

Recall $b^x = b^y$ if and only if $x = y$

Also if $x = y$, then $\log_b x = \log_b y$ (take log of both sides)

and if $x = y$, then $\ln x = \ln y$

ex. Solve $e^{5x} = 4$

$$\ln e^{5x} = \ln 4$$

$$5x = \ln 4$$

$$x = \frac{\ln 4}{5}$$

exact

You could take log of both sides but calc is easier! $x \ln 2 = \ln 5$
What about finding an approx. of
\(\log_2 5 \)?

To put in calc we have to
use a formula

Change of Base Formula

\[
\log_b a = \frac{\log_c a}{\log_c b} \\
\text{or} \quad = \frac{\log a}{\log b} = \frac{\ln a}{\ln b}
\]

\[
\log_2 5 = \frac{\log_{10} 5}{\log_{10} 2} \quad \text{or} \quad = \frac{\ln 5}{\ln 2}
\]

Try both on calc!

ex) Solve for x

a) \(\log_5 (3x+2) = 1 \)

Just convert to exponential!

\[
5^1 = 3x + 2 \\
-2 \quad -2
\]

\[
3 = 3x \\
x = 1
\]

Check it
\[
5(1) + 2 = 3 + 2 = 5 > 0
\]

b) \(\ln 7 = 10 + 6e^{2x} \\
-10 \quad -10
\]

\[
\frac{7}{6} = \frac{6e^{2x}}{6} \\
\frac{7}{6} = e^{2x} \\
\ln \frac{7}{6} = \ln e^{2x}
\]

\[
\frac{1}{2} \ln \frac{7}{6} = x \\
\approx 0.077075
\]
c) \(\ln x = 2 (\ln 3 - \ln 5) \)
\[\ln x = 2 \ln \frac{3}{5} \]
\[\ln x = \ln \left(\frac{3}{5}\right)^2 \]
\[e^{\ln x} = e^{\ln \left(\frac{3}{5}\right)^2} \]
\[x = \left(\frac{3}{5}\right)^2 \]
\[x = \frac{9}{25} \]

d) \(-3\ln x = a\)
\[\frac{-3}{-3} \ln x = \frac{-a}{-3} \]
\[\ln x = \frac{a}{3} \]
\[e^{\frac{a}{3}} = x \]