Section 2.4 - The Chain Rule

The chain rule

If \(y = f(u) \) is a differentiable function of \(u \) and \(u = g(x) \) is a differentiable function of \(x \), then the composite function \(y = f(g(x)) \)

is differentiable and

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
\]

or

\[
\frac{dy}{dx} = f'(g(x)) \cdot g'(x)
\]

Ex. Find \(\frac{dy}{dx} \) if \(y = (x^2+2)^3 \).

Let \(y(u) = u^3 \) and \(u(x) = x^2+2 \)

By the chain rule,

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
\]

= \(3u^2 \cdot 2x \) \(\text{then plug in } u = x^2+2 \)

\[
= 3(x^2+2)^2 \cdot 2x
\]

\[
= 3(x^4+4x^2+4) \cdot 2x
\]

\[
= \frac{3x^4+12x^2+12 \cdot 2x}{6x^3+24x^3+24x}
\]

Ex. Use chain rule to compute \(\frac{dy}{dx} \)

\(y = 1-3u^2, \ u = 3-2x \)

Then \(\frac{dy}{du} = -6u, \ \frac{du}{dx} = -2 \)

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -6u \cdot -2 = 12u = 12(3-2x)
\]

\[
= 12(3-2x)
\]
Use chain rule to compute \(\frac{dy}{dx} \) for the given value of \(x \).

Outer:
\[y = (x^2-1)^3 - 3(x^2-1)^2 + 6(x^2-1) - 5 \]

Inner:
\[u = x^2 - 1 \]
\[\frac{du}{dx} = 2x \]
\[\frac{dy}{du} = 3u^2 - 6u + 6 \]

\[\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \]
\[= (3u^2 - 6u + 6)(2x) \]

Method 1: Substitute \(u = x^2 - 1 \) back in (as we have been)

\[= 3(x^2 - 1)^2 - 6(x^2 - 1) + 6 \cdot 2x \]
\[= 3x^4 - 12x^2 + 12 - 6x^2 + 6 + 12 \]
\[= 3x^4 - 18x^2 + 18 \]
\[= 6x^2 - 24x^2 + 30x \]

\[\left. \frac{dy}{dx} \right|_{x=1} = 6(1)^5 - 24(1)^3 + 30(1) \]
\[= 6 - 24 + 30 \]
\[= 2 \]

OR

Method 2: Find \(u \) when \(x = 1 \) & subst.
\[u = x^2 - 1 \]
\[x = 1 \Rightarrow u = 1^2 - 1 \]
\[u = 0 \]

\[\frac{dy}{dx} = (3u^2 - 6u + 6)2x \]
\[\frac{dy}{dx} \bigg|_{u=0} = 6(6^2 - 6(0) + 6)2(1) = 6 \cdot 2 \cdot 12 \]
Method 2 is shorter, but sometimes we want an actual equation for $\frac{dy}{dx}$ in terms of x only, then you must use method 1.

Ex. Find $\frac{dy}{dx}$ for $y = \sqrt{u}$, $u = x^2 - 2x + 6$.

\[
\frac{dy}{du} = \frac{1}{2\sqrt{u}} \
\frac{du}{dx} = 2x - 2
\]

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2\sqrt{u}} (2x-2)
\]

At $x = 3$:

\[
\frac{dy}{dx} \bigg|_{u=9} = \frac{1}{2\sqrt{9}} (2(3)-2) = \frac{1}{3} (6-2) = \frac{4}{3} = \frac{2}{3}
\]

Application?

The derivative of the outer function evaluated at the inner function times the derivative of the inner function.

Ex. $f(x) = (x^2 + 3x + 2)^6$.

\[
f'(x) = 6(x^2 + 3x + 2)^5 (2x + 3)
\]

\[
= 6 \left(\frac{x^2 + 3x + 2}{(2x + 3)} \right)^5 (2x + 3)
\]

\[
= \left(\frac{x^2 + 3x + 2}{(2x + 3)} \right)^5 (12x + 18)
\]

Slope of tan. line, still, of the composite function y.

> outer function

> inner function

> The deriv. of the outer function evaluated at the inner function times the deriv. of the inner function.
The Generalized Power Rule
For any real \(n \) and differentiable function \(h \),
\[
\frac{d}{dx} [h(x)]^n = n [h(x)]^{n-1} \cdot \frac{d}{dx} [h(x)]
\]
or\[h'(x) = n [h(x)]^{n-1} (h'(x))]

or\[f'(x) = (\text{Stuff})^5 \\
= 6 (\text{Stuff})^5 \cdot (\text{Stuff})'
\]

Example Differentiate
\[y = (x^5 - 4x^3 - 7)^8\]
\[
\frac{dy}{dx} = 8 (x^5 - 4x^3 - 7)^7 \cdot (5x^4 - 12x^2)
\]

Example, Diff. 3 \[f(x) = \frac{1}{(2x+3)^5} = (2x+3)^{-5}\]
\[
f'(x) = -5 (2x+3)^{-6} (2x+3)'
\]
\[
= -5 (2x+3)^{-6} (2)
\]
\[
= \frac{-10}{(2x+3)^6}
\]

Combine rules
Example, \[f(x) = (3x+1)^4 (5x-3)^2 \]

Apply Product Rule
\[
f = (3x+1)^4 \\
f' = 4(3x+1)^3 (3) = 12 \\
g = (5x-3)^2 \\
g' = 2(5x-3) \cdot (5) = 10 (5x-3)
\]
\[
f'(x) = fg' + gf' = (3x+1)^4 \left[10(5x-3) + (5x-3)^2 \right] / 12 (3x+1)^3
\]
\[
f'(x) = (3x+1)^3 (5x-3) (90x - 26)
\]