Section 1.1 - Functions

Motivation: In many real world situations things are related in certain ways. For instance, the amount of pollution in a certain area may depend on the number of cars on the road, temperature in a room might depend on the number of people in the room. Rate that soup cools depends on room temp. These situations can be represented as functions.

Function Defn
A rule that assigns to each object in a set A exactly one object in a set B.
Set A = Domain (Real #s)
Set B = Range

Usually

\[\text{map} \quad A \rightarrow B \]

Function Notation
\[y = f(x) \]
Plug in an x value to get a y value out
Function Evaluation

ex) Find $f(-3)$ if $f(x) = x^2 + 4x - 2$

\[f(-3) = (-3)^2 + 4(-3) - 2 \]
\[= (-3)^2 + 4(-3) - 2 \]
Notation
\[v = -3 - 2 \]
\[v = -5 \]
Other representation
\[\Rightarrow x = -3, \ y = -5 \]
\[(-3, -5) \]

Evaluate

ex) \[g(t) = (2t - 8)^{1/2} \]
\[g(t) = \sqrt{2(t) - 8} \]
\[g(9) = \sqrt{2(9) - 8} \]
\[= \sqrt{18 - 8} \]
\[= \sqrt{10} \]
\[g(4) = \sqrt{2(4) - 8} \]
\[= 0 \]
\[g(0) = \sqrt{2(0) - 8} \]
\[= \sqrt{-8} \]
\[= \text{undefined (imaginary)} \]

1pm - Day 11
ex) \[h(x) = \begin{cases}
-2x + 4 & \text{if } x \leq 1 \\
 x^2 + 1 & \text{if } x > 1
\end{cases} \]
\[h(3) = (3)^2 + 1 \]
\[= 10 \]
\[h(1) = -2(1) + 4 \]
\[= 2 \]
Natural Domain
All x values for which the function is defined. Restrictions on domain.

Linear \(f(x) = mx + b \) Domain = All real numbers \(\mathbb{R} \) or \((-\infty, \infty) \)

Polyomials \(g(x) = ax^n + bx^{n-1} + \ldots + c \) Domain = \(\mathbb{R} \)

Square Roots
Negative numbers do not have real square roots.

Radical
Radical must be positive or zero \(\sqrt{\text{radicand}} \geq 0 \)

ex. \(f(x) = \sqrt{2x + 5} \)

Domain Radicand \(\geq 0 \)

\(-2x + 5 \geq 0 \)
\[-2x \geq -5 \]
\[x \leq \frac{5}{2} \]

Rational Functions
\(\frac{Q(x)}{R(x)} \) where \(Q(x) \neq R(x) \) are polynomials

Restriction on domain: Denom cannot equal zero \(\frac{\text{numerator}}{\text{denominator}} \)

ex. \(g(x) = \frac{3}{4x - 5} \)

Denom \(\neq 0 \)
\[4x - 5 \neq 0 \]
\[4x \neq 5 \]
\[x \neq \frac{5}{4} \]

ex. \(f(x) = \frac{\sqrt{\text{radicand}}}{\sqrt{2x + 5}} \)

Domain \(\text{radicand} > 0 \)

\(3 \times 1 \times x \neq \frac{5}{4} \) \((-\infty, 5) \cup (\frac{5}{4}, \infty) \)
Application in Economics

Functions dealing with marketing

Demand - price $p = D(x)$ that is charged for each unit of commodity if x units are to be sold.

Supply - price $p = S(x)$ at which producers are willing to supply x units to market.

Revenue - $R(x)$ is revenue from selling x units

$$P(x) = (# \text{ of units sold}) \cdot (\text{price per item})$$

$$= x \cdot p(x)$$

Cost - $C(x)$ is the cost of producing x units.

Profit - $P(x)$ is profit from selling x units of the commodity.

$$P(x) = \text{Revenue} - \text{Costs}$$

$$= R(x) - C(x)$$

$$= x \cdot p(x) - C(x)$$

(Higher the unit price, the fewer the # of units demanded & Vice versa)

Example: Given $p = D(x)$ & $c(x)$ find

a) The revenue $R(x)$ & profit $P(x)$

b) All values of x for which production of the commodity is profitable.
LEAVE OUT

ex. cont.

\[D(x) = -0.5x + 39 = p(x) \]

\[C(x) = 1.5x^2 + 9.2x + 67 \]

\[R(x) = x \cdot p(x) = x(-0.5x + 39) \]

\[R(x) = -0.5x^2 + 39x \]

\[P(x) = R(x) - C(x) = -0.5x^2 + 39x - (1.5x^2 + 9.2x + 67) \]

\[P(x) = -2x^2 + 29.8x - 67 \]

\[a = -2 \quad b = 29.8 \quad c = -67 \]

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[\quad \quad = \frac{-29.8 \pm \sqrt{29.8^2 - 4(-2)(-67)}}{2(-2)} \]

\[= 2.76 \quad + \quad 12.14 \]

Profit > 0 when

\[2.76 \leq x \leq 12.14 \]

\[(2.76, 12.14) \]
Function Composition

\[g \quad \overset{\text{output}}{\longrightarrow} \quad g(x) \quad \overset{\text{input}}{\longrightarrow} \quad f \quad \overset{\text{output}}{\longrightarrow} \quad f(g(x)) \]

Notation

\((f \circ g)(x) = f(g(x)) \quad (g \circ f)(x) = g(f(x))\)

"f of g of x" inner

NOT times

In general \(f(g(x)) \neq g(f(x))\)

ex. Find \(f(g(x))\) if \(f(u) = u^2 + 4\), \(g(x) = x - 1\)

\[f(g(x)) = f\left(x - 1 \right) \]
\[= (x - 1)^2 + 4 \]
\[= (x - 1)(x - 1) + 4 \]
\[= x^2 - 2x + 1 + 4 \]
\[= x^2 - 2x + 5 \] composite function

ex. Find \(f(5x^2 + 4x)\)

if \(f(x) = 2x + 3\)

\[f(5x^2 + 4x) = 2(5x^2 + 4x) + 3 \]
\[= 10x^2 + 8x + 3 \]

ex. If \(f(x) = \sqrt{x+1}\), find \(h(x)\) & \(g(w)\) so that \(f(x) = g(h(x))\)

ex. If \(f(x) = \frac{1}{x^2 + 1}\), find \(h(x)\) & \(g(w)\) so that \(f(x) = g(h(x))\)

Option 1: \(h(x) = x^2 + 1\)

\[g(w) = \frac{1}{w} \]

Option 2: \(h(x) = \frac{1}{u}\)

\[g(w) = \frac{1}{u + 1} \]

Option 3: \(h(x) = x^2 + 1\)

\[g(u) = u^{-1} \]
Difference Quotient (Expression)
\[\frac{f(x+h) - f(x)}{h} \]
*Important to define derivative
*Fundamental concept of calculus

Ex. Find the difference quotient for \(f(x) = 3 - x^2 \)

\[
f(x) = 3 - x^2
\]

\[
f(x+h) = 3 - (x+h)^2
\]
\[
= 3 - (x^2 + 2xh + h^2)
\]
\[
= 3 - x^2 - 2xh - h^2
\]

\[
f(x+h) - f(x) = \frac{3 - x^2 - 2xh - h^2 - (3 - x^2)}{h}
\]
\[
= \frac{-2xh - h^2}{h}
\]
\[
= h(-2x-h)
\]

Can't cancel parts of a sum
\[
\frac{8}{5} = \frac{5+3}{5} = 3
\]

No!

Skip application

#66, #79 (Similar to #80)

74. Manufacturing Cost
\[C(q) = 1200 + 900q \]
\[q(t) = 4t + 6 \]

a) Express cost as a function of time \((C(t)) \)
\[(C(t)) = 625t^2 + 25t + 900 \]

b) \(C(3) = 6600 \) a) \(t = 4 \)

25t^2 + 40t + 100 = 0
\(a = 25 \), \(b = 40 \), \(c = 100 \)

\(x = -\frac{b}{2a} \)
\(x = -\frac{40}{50} = -0.8 \)

\(x = 0 \)
Another example of finding difference quotient:

Find the Difference Quotient given

\[f(x) = \frac{3}{x+1} \]

The Difference Quotient

\[\frac{f(x+h) - f(x)}{h} = \frac{3}{(x+h)+1} - \frac{3}{x+1} \]

\[= \frac{3}{x+h+1} - \frac{3}{x+1} \]

Now get a common denominator & subtract

\[= \frac{3(x+1) - 3(x+h+1)}{(x+h+1)(x+1)} \]

\[= \frac{3x+3 - 3x - 3h - 3}{(x+h+1)(x+1)} \]

\[= \frac{3x+3 - 3x - 3h - 3}{(x+h+1)(x+1)} \cdot \frac{1}{h} \]

\[= \frac{-3h}{(x+h+1)(x+1) \cdot h} \]

\[= \frac{-3}{(x+h+1)(x+1)} \]

Don't worry about "wasting" paper.
Write big & show steps!!
Find the difference quotient:

\[f(x) = \frac{3}{x} \]

\[
\frac{f(x+h) - f(x)}{h} = \frac{\frac{3}{x+h} - \frac{3}{x}}{h}
\]

\[
= \frac{\frac{3x - 3(x+h)}{x(x+h)}}{h}
\]

\[
= \frac{3}{x(x+h)} \cdot \frac{1}{h}
\]

\[
= \frac{3}{x(x+h)}
\]
\[f(x) = \sqrt{x} \]

\[g(x) = -5x + 1 \]

\[f(g(x)) = f(-5x + 1) \]

\[= \sqrt{-5x + 1} \]

\[g(f(x)) = g(\sqrt{x}) \]

\[= -5(\sqrt{x}) + 1 \]

\[= -5\sqrt{x} + 1 \]

\[(\sqrt{-5x + 1})^2 = (5\sqrt{x} + 1)^2 \]

\[-5x + 1 = 25\sqrt{x}\sqrt{x} + 10\sqrt{x} + 1 \]

\[-5x + 1 = 25x + 10\sqrt{x} \]

\[-30x - 1 = 10\sqrt{x} \]

\[-30x - 1 = 10\sqrt{x} \]

\[(3x)^2 = (5x)^2 \]

\[9x^2 = x \]

\[9x^2 - x = 0 \]

\[x(9x - 1) = 0 \]

\[x = 0 \]

\[x = \frac{1}{9} \]

\[\sqrt{-5\left(\frac{1}{9}\right) + 1} \]

\[= -5\sqrt{\frac{1}{9}} + 1 \]

\[= -\frac{5}{3} + 1 \]

\[\sqrt{\frac{4}{9}} = -\frac{5}{3} + \frac{3}{3} \]

\[\frac{2}{3} = -\frac{2}{3} \]

No